首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 707 毫秒
1.
We report for the first time the use of lithiated crystalline V2O5 thin films as positive electrode in all-solid-state microbatteries. Crystalline LixV2O5 films (x ≈ 0.8 and 1.5) are obtained by vacuum evaporation of metallic lithium deposited on sputtered c-V2O5. An all-solid-state lithium microbattery of Li1.5V2O5/LiPON/Li exhibited a typical reversible capacity of 50 μAh/cm2 in the potential range 3.8/2.15 V which exceeds by far the results known on all-solid-state lithium batteries using amorphous V2O5 films and lithiated amorphous LixV2O5 thin films as positive electrode. Hence, the present work opens the possibility of using high performance crystalline lithiated V2O5 thin films in rocking-chair solid-state microbatteries.  相似文献   

2.
Thin films of Ga10Se80Hg10 have been deposited onto a chemically cleaned Al2O3 substrates by thermal evaporation technique under vacuum. The investigated thin films are irradiated by 60Co γ-rays in the dose range of 50–150 kGy. X-ray diffraction patterns of the investigated thin films confirm the preferred crystallite growth occurs in the tetragonal phase structure. It also shows, the average crystallite size increases after γ-exposure, which indicates the crystallinity of the material increases after γ-irradiation. These results were further supported by surface morphological analysis carried out by scanning electron microscope and atomic force microscope which also shows the crystallinity of the material increases with increasing the γ-irradiation dose. The optical transmission spectra of the thin films at normal incidence were investigated in the spectral range from 190 to 1100 nm. Using the transmission spectra, the optical constants like refractive index (n) and extinction coefficient (k) were calculated based on Swanepoel’s method. The optical band gap (Eg) was also estimated using Tauc’s extrapolation procedure. The optical analysis shows: the value of optical band gap of investigated thin films decreases and the corresponding absorption coefficient increases continuously with increasing dose of γ-irradiation.  相似文献   

3.
The structural parameters, density of states, electronic band structure, charge density, and optical properties of orthorhombic SrBi2Ta2O9 have been investigated using the plane-wave ultrasoft pseudopotential technique based on the first-principle density functional theory (DFT). The calculated structural parameters were in agreement with the previous theoretical and experimental data. The band structure showed an indirect (S to Γ) band gap with 2.071 eV. The chemical bonding along with population analysis has been studied. The complex dielectric function, refractive index, and extinction coefficient were calculated to understand the optical properties of this compound, which showed an optical anisotropy in the components of polarization directions (100), (010), and (001).  相似文献   

4.
Electrochromic effect of cobalt oxide thin films was studied as a function of substrate temperature (573–673 K). Tricobalt tetraoxide (Co3O4) thin films were deposited on glass and fluorine-doped tin oxide (FTO) substrates by nebulized spray technique using cobalt nitrate as precursor material. The XRD patterns indicated (311) plane was dominant for all the films irrespective of the deposition temperature. Williamson-Hall (W-H) analysis was made to understand the strain variation in the prepared Co3O4 films under different deposition temperature by employing uniform deformation model (UDM). Scanning electron microscopy images revealed porous morphology for the film prepared at 623 K. The optical parameters such as refractive index (n), extinction coefficient (k), and band gap were derived from UV-visible spectra of Co3O4 films. The electrochromic performance of the deposited Co3O4 films was analyzed through cyclic voltammetry, chronocoulometry, chronoamperometry, and iono-optical studies.  相似文献   

5.
The dielectric properties of Sr0.75Ba0.25Nb2O6 relaxor ferroelectric thin films were carefully analyzed. In contrast to bulk samples which present three distinct dielectric relaxation phenomena Sr0.75Ba0.25Nb2O6 thin films present only two of them. The suppression of the third anomaly can be mainly attributed to the narrow grain size distribution of nanograins and weak tensile strains imposed to the film from the substrate. The whole set of results point to the interpretation of a dielectric response characteristic of mesoscopic structure, which is composed of clusters and nanodomains.  相似文献   

6.
In recent years a wide range of Aurivillius layered materials have been introduced. These novel materials are produced in many various forms such as fibers, thin films as well as bulk by using a number of processing routes. As advanced materials they are they have many interesting properties which include a number of useful electrical properties related to separated grain and grain boundary conductivity, impedance, activation energies, etc. In this paper these properties are described and discussed in detail. The electrical properties of the vanadium doped BaBi2Nb2O9 ceramic was measured over a wide range of temperatures by impedance spectroscopy (IS). The separated grain activation energy, calculated from Arrhenius characteristics at temperatures between room temperature and 600 °C, was 1 eV for 0 at.% of vanadium dopant and 1.2 eV for 10 at.%, whereas the activation energies in the grain boundary region were 0.97 and 1.15 eV, respectively. The obtained results suggest the significant role of vanadium dopant, causing ordering the crystalline structure.  相似文献   

7.
PbI2 thin films were deposited on glass substrates via chemical bath deposition. The characteristics of PbI2 thin films were examined through their structural and optical properties. X-ray diffraction spectra showed the presence of rhombohedral structure and atom planes were subject to change with the pH of the bath. Scanning electron microscope indicated uniform distribution of grains. Optical properties were examined via UV–VIS; optical spectrum of the thin films was measured at the range of 200–1100 nm wavelength. Optimum pH levels for producing thin films were found to be pH 4–5. It has been observed that transmission and optical band gap (E g) increased with the pH of the bath, which varied between 66–95 and 2.24–2.50 %, respectively; on the other hand film thickness of PbI2 thin films was decreased with the pH of the bath. Energy-dispersive X-ray spectroscopy analysis were in accordance with theoretical value of PbI2 at pH = 4 and 5. Refractive index was negatively correlated with pH of the chemical bath; it has been calculated as 1.97, 1.40, 1.29 and 1.24 for the films produced at pH 2, 3, 4 and 5. The results of the study were compared with similar studies in the literature.  相似文献   

8.
Ni sintering at high temperature (~ 800 °C) operation drastically degrades the performance of Ni-yttria-stabilized zirconia (YSZ) anode in solid oxide fuel cell (SOFC). Mixed ionic and electronic conductive oxides such as CeO2 and Nb2O5 enhance the dispersion of Ni, CeO2 enhances the redox behavior and promotes charge transfer reactions, and Nb2O5 increases the triple phase boundary. In the present work, anode-supported SOFC is fabricated and tested in H2 fuel at 800 °C. YSZ and lanthanum strontium manganite (LSM)-YSZ are used as the electrolyte and composite cathode with NiO-YSZ, CeO2-NiO-YSZ, and Nb2O5-NiO-YSZ as an anode. The peak power density obtained for the cell with 10% CeO2–30% NiO-YSZ anode at the 5 and 25 h of operation is 330 and 290 mW cm?2 which is higher than that for 40% NiO-YSZ anode (275 mW cm?2 at 5 h). The peak power density obtained for the cell with 10% Nb2O5–30% NiO-YSZ anode at the 5 and 25 h of operation is 301 and 285 mW cm?2 which is higher than that for 40% NiO-YSZ anode (275 mW cm?2 at 5 h). Physical characterization has been carried to study morphology, elemental analysis, particle size, and phase formation of the fabricated anode before and after cell operation to correlate the cell performance.  相似文献   

9.
Zn2SnO4 (ZTO) is a stable semiconductor in ZnO–SnO2 system and important transparent conducting oxide (TCO) predominantly used in optoelectronic devices. ZTO thin films were prepared by RF magnetron sputtering using Zn2SnO4 ceramic target in this paper. The effects of annealing temperatures and oxygen contents on characterization of ZTO thin films were studied. The results show that ZTO thin films prepared by RF magnetron sputtering are amorphous with an optical band gap of 3.22 eV. After annealing at 650°C in Ar atmosphere for 40 min, ZTO films possess a spinel structure with an optical band gap of 3.62 eV. The atomic force microscope (AFM) data of morphology reveals that the surface roughness of films is about 2 nm. The results of energy dispersive spectrometer (EDS) show that the concentration ratio of Zn to Sn is in the range from 1.44 to 1.57. The results of Hall-effect-measurement system reveal that the resistivity of films varies from 102 to 10–1 Ωcm, carrier concentration is about 1017 cm–3, and mobility ranges from 100 to 101 cm2 v–1 s–1.  相似文献   

10.
Structure and optical properties of ZnSe/SiO2 layered nanocomposites obtained using microwave magnetron sputtering have been studied. The nanocomposites are X-ray amorphous at relatively small thicknesses of the zinc selenide layers. When the thickness of the zinc selenide layers exceeds 20 Å, ZnSe/SiO2 films contain SiO2 amorphous phase and zinc selenide cubic nanocrystallites. It has been demonstrated that the thickness of zinc selenide layers affects the microstresses, refractive index, and band gap.  相似文献   

11.
Lead lithium borate glass samples composition 50Li2B4O7–(50?x)Pb3O4–x CuO, where x = 0–35 mol% were prepared by melt quenching method. The density of the prepared samples was measured and molar volume was calculated. IR spectra were measured for the prepared samples at room temperature to investigate the glass structure. The IR spectra were deconvoluted using curves of Gaussian shape at approximately the same frequencies. The deconvoluted data were used to study the effect of CuO content on all the structural borate and water groups. The optical band gap obtained directly from absorption coefficient, refractive index and extinction coefficient, also by using the Tauc model. The type of transition is determined by the simple and accurate method.  相似文献   

12.
The electrical and optical properties of ZnO thin films grown with an O2/O3 gas mixture are compared with samples grown with pure oxygen gas. The ZnO films were grown on sapphire(0001) by pulsed laser deposition. The residual background carrier concentration is reduced by using an O2/O3 gas mixture as compared to pure molecular oxygen. In particular, a one order of magnitude reduction in residual background carrier density (6.15×1016 cm-3) is achieved by using an O2/O3 gas mixture. The lower donor defect density is attributed to the generation of acceptor defects compensating for the residual donor defects. Photoluminescence results show that the deep level emission increased and the band edge emission decreased for the ZnO films grown with ozone, as compared to the samples grown with pure oxygen gas. PACS 73.61.Ga; 78.55Et; 81.05 Dz; 81.15.Fg  相似文献   

13.
Ge20Te80 films were thermally evaporated onto ultrasonically cleaned glass substrates kept at room temperature. The as-deposited films showed an amorphous structure. An X-ray technique, a scanning electron microscope, and a transmission electron microscope were used to follow up the structural transformations that resulted from heat treatment. From the spectral dependence of the absorption coefficient, a direct electronic transition was mainly responsible for the photon absorption inside the films. The optical data indicated that the width of the localized states tails increases while the optical gap decreases with an increase of the annealing temperature of the investigated films. The optical results have been interpreted on the basis of amorphous–crystalline transformations. PACS 61.16.D; 61.40.D; 78.65.M  相似文献   

14.
The thin films of CdS1-xSex were successfully deposited over glass substrates by chemical bath deposition technique. Cadmium acetate, thiourea and sodium selenosulfate were used as source materials for Cd2+, S2? and Se2? ions, while 2-mercaptoethanol was used as capping agent. The various deposition conditions such as precursor concentration, deposition temperature, pH and deposition time were optimized for the deposition of CdS1-xSex thin films of good quality and the films were annealed at 200° and 300 °C. The structural, morphological, chemical and optical properties were examined by various characterization techniques and discussed in detail. The optical band gap of CdS1-xSex thin film samples were estimated and found in the range from 2.11 to 1.79 eV for as-deposited and annealed thin films.  相似文献   

15.
Proton-conducting solid polymer blend electrolytes based on methylcellulose-polyvinyl alcohol:ammonium nitrate (MC-PVA:NH4NO3) were prepared by the solution cast technique. The structural and electrical properties of the samples were examined by X-ray diffraction (XRD), Fourier transform infrared (FTIR), and electrical impedance (EI) spectroscopy. The shifting and change in the intensity of FTIR bands of the electrolyte samples confirm the complex formation between the MC-PVA polymer blend and the NH4NO3 added salt. The observed broadening in the XRD pattern of the doped samples reveals the increase of the amorphous fraction of polymer electrolyte samples. The increase in electrical conductivity of polymer electrolyte samples with increasing salt concentration attributed to the formation of charge-transfer complexes, and to increase in the amorphous domains. A maximum ionic conductivity of about 7.39 × 10?5 S cm?1 was achieved at room temperature for the sample incorporating 20 wt% of NH4NO3. The DC conductivity of the present polymer system exhibits Arrhenius-type dependence with temperature. The decrease in the values of activation energies with increasing salt concentration indicates the ease mobility of ions. The decrease in dielectric constant with increasing frequency was observed at all temperatures. Optical properties such as absorption edge, optical band gap, and tail of localized state were estimated for polymer blend and their electrolyte films. It was found that the optical band gap values shifted towards lower photon energy from 6.06 to 4.75 eV by altering the NH4NO3 salt content.  相似文献   

16.
In this research, Cu-doped TiO2 thin films have been successfully deposited onto a glass substrate by Sol–gel technique using dip coating method. The films were annealed at different annealing temperatures (400–500 °C) for 1 h. The structural, optical and electrical properties of the films were investigated and compared using X-ray Diffraction, UV–visible spectrophotometer and 4-point probe method. Optical analysis by mean transmittance T(λ) and absorption A(λ) measurements in the wavelength range between 300 to 800 nm allow us to determine the indirect band gap energy. DRX analysis of our thin films of TiO2:Cu shows that the intensities of the line characteristic of anatase phase increasing in function of the temperature.  相似文献   

17.
ZnGa2O4 thin-film phosphors have been grown on Si(100), Al2O3(0001) and MgO(100) substrates using pulsed laser deposition. The structural characterization was carried out on a series of ZnGa2O4 films grown on various substrates under various substrate temperatures and oxygen pressures. The films grown on these substrates not only have different crystallinity and surface morphology, but also different Zn/Ga composition ratio. The crystallinity and photoluminescence (PL) of the ZnGa2O4 films are highly dependent on the deposition conditions, in particular the stoichiometry ratio of Zn/Ga and the kind of substrate. The variation of Zn/Ga in the films also depends on not only the oxygen pressure but also the substrate temperature during deposition. The PL properties of pulsed laser deposited ZnGa2O4 thin films have indicated that Al2O3(0001) and MgO(100) are promising substrates for the growth of high-quality ZnGa2O4 thin films and that the luminescence brightness depends on the substrate. The luminescence spectra show a broad band extending from 350 to 600 nm and peaking at 460 nm. Received: 11 July 2002 / Accepted: 31 July 2002 / Published online: 28 October 2002 RID="*" ID="*"Corresponding author. Fax: +82-51-6206356, E-mail: jhjeong@pknu.ac.kr  相似文献   

18.
Layered-perovskite ferroelectric Bi2.85La0.15TiNbO9 (LBTN) optical waveguiding thin films were grown on fused silica substrates by pulsed laser deposition (PLD). X-ray diffraction (XRD) revealed that the film is highly (00l) textured. We observed sharp and distinct transverse electric (TE) and transverse magnetic (TM) multimodes and measured the refractive indices of LBTN thin films at 632.8 nm. The ordinary and extraordinary refractive indices were calculated to be n TE=2.358 and n TM=2.464, respectively. The film homogeneity and the film-substrate interface were analyzed using an improved version of the inverse Wentzel–Kramer–Brillouin (iWKB) method. The refractive index of the film remains constant at n 0 within the waveguiding layer. The average transmittance of the film is 70% in the wavelength range of 400–1400 nm and the optical waveguiding properties were evaluated by the optical prism coupling method. Our results showed that the LBTN films are very good electro-optical active material.  相似文献   

19.
Layered cobalt oxides Ca3Co4O9 thin films have been grown directly on c-cut sapphire substrates using pulsed laser deposition. X-ray diffraction and transmission electron microscopy characterizations show that the deposited films present the expected monoclinic structure and a texture along the direction perpendicular to the Al2O3(001) plane. The Ca3Co4O9 structure presents six variants in the film plane. Rutherford backscattering spectroscopy shows that the films are stoichiometric and that the film thickness agrees with the nominal value. The susceptibility χ of the films, recorded along the c-axis of the substrate, after field cooling and zero field cooling in an applied field of 1 kOe shows two magnetic transitions at 19 and 370 K which agree well with previous findings on single crystal samples. In turn, at low temperature (5 K), the magnetization curve along the c-axis exhibits coercive field and remanent magnetization much smaller than those reported for bulk samples, which can be related to the influence of structural variants and structural defects.  相似文献   

20.
We report on the effect of oxygen partial pressure and vacuum annealing on structural and optical properties of pulsed laser-deposited nanocrystalline WO3 thin films. XRD results show the hexagonal phase of deposited WO3 thin films. The crystallite size was observed to increase with increase in oxygen partial pressure. Vacuum annealing changed the transparent as-deposited WO3 thin film to deep shade of blue color which increases the optical absorption of the film. The origin of this blue color could be due to the presence of oxygen vacancies associated with tungsten ions in lower oxidation states. In addition, the effects of VO2 content on structural, electrochemical, and optical properties of (WO3)1−x (VO2) x nanocomposite thin films have also been systematically investigated. Cyclic voltammogram exhibits a modification with the appearance of an extra cathodic peak for VO2–WO3 thin film electrode with higher VO2 content (x ≥ 0.2). Increase of VO2 content in (WO3)1−x (VO2) x films leads to red shift in optical band gap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号