首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
采用双球镜准光腔、频谱仪和锁相返波管组建了D波段低损耗介质测试系统,该系统通过频谱仪和外置谐波混频器得到腔体谐振测试数据,并用拟合或积分方法从谐振曲线中求解出准光腔的品质因数。测得双球镜开腔的固有品质因数大于8105,使该系统在工作波段可测量损耗角正切为10-5量级的低损耗介质。用该系统测出的石英、人造金刚石和蓝宝石的介电常数和损耗,与报道的结果一致,并测得4H-SiC在132.07 GHz的介电常数实部为9.598,损耗角正切为6.110-5。  相似文献   

2.
《光学学报》2021,41(4):213-216
基于半导体光放大器和高速光纤法布里-珀罗滤波器,搭建了一个用于产生高速扫频激光的短环形腔。滤波器从长波到短波扫描时,关闭半导体光放大器的偏置电流,可以获得50%占空比的扫频激光。借助交织器,可以获得占空比为100%的扫频激光。再利用二级半导体光放大器,可以进一步提高扫频激光的输出功率。经测试,本扫频激光的扫描频率为500 kHz,中心波长为1550 nm,扫描范围达到67 nm,有效相干长度为6.5 mm,平均输出功率大于20 mW。  相似文献   

3.
《光学技术》2021,47(3):315-320,333
针对传统内调制光频域反射(OFDR)分布式传感系统中扫频激光存在的频率变化非线性问题及其造成的信噪比降低问题,提出了基于光IQ调制的光频域反射系统,分析了光IQ调制扫频基本原理和光频域反射传感系统基本原理,搭建了基于光IQ调制器的扫频激光生成系统和OFDR温度变化定位实验系统,通过光IQ调制器对稳频激光进行调制以生成线性扫频激光,并将线性扫频激光导入OFDR系统实现对待测光纤上温度变化的定位检测。实验结果证明,基于光IQ调制器的OFDR系统可以准确定位待测光纤上的温度变化位置,在1000m光纤上定位误差为0.0606m。研究表明,基于光IQ调制的光频域反射系统可以实现中长距离的高精度温度变化定位传感。  相似文献   

4.
 通过建立外加载谐振腔的等效电路模型,给出了加载以后外加载谐振腔的频率、品质因数和间隙阻抗的解析计算公式,并使用电磁场模拟软件证明了计算结果的正确性。由计算和模拟结果显示,在使用谐振腔加载的方法降低品质因数的同时,还可以利用模式重叠进一步展宽频带。由等效电路模型分析了主腔和负载腔的品质因数、主腔和负载腔之间的频率差以及耦合口的大小对加载后谐振腔的品质因数和间隙阻抗的影响。  相似文献   

5.
为测试环射频铁氧体加载同轴谐振腔中铁氧体环的性能和批量筛选铁氧体环,研制了铁氧体双环测量系统。与国内外同类设备相比,该系统采用了扫频测量的闭环控制,可以模拟射频腔的运行工况、实现对铁氧体环性能的动态测量。扫频范围测量结果表明:该测试系统满足在0~3 000 A偏流调谐范围内的1.02~2.44 MHz频率覆盖要求,固定频率点的高功率测量结果和材料性能参数与日本J-PARC测量数据吻合。  相似文献   

6.
超导腔的静态热负荷和无载品质因数是表征超导腔低温恒温器以及超导铌腔性能好坏的最重要参数.BEPCⅡ超导腔采用的是液氨浸泡冷却方式,对两个超导腔在测试站分别进行了降温调试,在超导腔达到超导状态并稳定运行后,对其静态热损耗进行了测定.此外,超导腔Q_0的测量主要是采用热力学的方法测量其高频损耗然后经计算得出Q_0.介绍了BEPCⅡ超导腔静态热负荷和无载品质因数的测量原理及方法,并且给出了两个超导腔在不同高频加速电压下的测试结果.此测试结果已作为BEPCⅡ超导腔验收测试的重要依据.  相似文献   

7.
超导腔的静态热负荷和无载品质因数是表征超导腔低温恒温器以及超导铌腔性能好坏的最重要参数.BEPCⅡ超导腔采用的是液氦浸泡冷却方式,对两个超导腔在测试站分别进行了降温调试,在超导腔达到超导状态并稳定运行后,对其静态热损耗进行了测定.此外,超导腔Qo 的测量主要是采用热力学的方法测量其高频损耗然后经计算得出Qo.介绍了BEPCⅡ超导腔静态热负荷和无载品质因数的测量原理及方法,并且给出了两个超导腔在不同高频加速电压下的测试结果.此测试结果已作为BEPCⅡ超导腔验收测试的重要依据.  相似文献   

8.
边琳  李少鹏  刘亚萍 《中国物理 C》2008,32(Z1):166-168
超导腔的静态热负荷和无载品质因数是表征超导腔低温恒温器以及超导铌腔性能好坏的最重要参数. BEPCⅡ超导腔采用的是液氦浸泡冷却方式, 对两个超导腔在测试站分别进行了降温调试, 在超导腔达到超导状态并稳定运行后, 对其静态热损耗进行了测定. 此外, 超导腔Q0的测量主要是采用热力学的方法测量其高频损耗然后经计算得出Q0. 介绍了BEPCⅡ超导腔静态热负荷和无载品质因数的测量原理及方法, 并且给出了两个超导腔在不同高频加速电压下的测试结果. 此测试结果已作为BEPCⅡ超导腔验收测试的重要依据.  相似文献   

9.
针对窄线宽激光器输出谱线窄,难以被锁定的情况,利用F-P腔特有极窄线宽、高精细度特性对激光器谱线线宽实施压窄及频率锁定。通过设计实验方案并搭建锁频测试平台,利用F-P腔外部光反馈将窄线宽半导体激光器线宽压窄来提高锁频精度。通过监测正弦波调制下F-P腔对于4种不同直流电压下激光PZT扫频段的透射谱线,并对其分别进行解调和锁频精度测试,得到直流高压放大器电压为73 V时对窄线宽激光器进行扫频,激光器反馈锁频精度最高可达1.5 MHz。  相似文献   

10.
光学微球腔因其回音壁模式可获得极高的品质因数而受到广泛关注.本文分析了Fabry-Perot腔和微球腔的基本原理,通过CO2激光熔融光纤实验制得了直径为1.2 mm的微球腔,并测试了微球腔和锥形光纤耦合结构的耦合特性.采用典型的PDH稳频系统设计了基于微球腔的稳频系统,分析了用于鉴频的误差曲线的吸收特性和色散特性,对比了不同调制频率、微球腔直径、耦合损耗、传输损耗下与误差曲线斜率的关系.结果表明:耦合状态下最大Q值可达到1.1×108,调节微球腔内横磁模和横电模的转换可优化耦合效率,匹配微球腔和锥形光纤的尺寸得到了径向二阶模式的透射谱,误差曲线效率达到15.4A mW/MHz.球腔在提高PDH稳频技术灵敏度上具有巨大潜力.  相似文献   

11.
为了实现市电质量监测并降低测量成本,以STC12C5A60S2微处理器为控制核心,利用电压有效值转换芯片等器件,设计了一款市电参数测量仪,对频率、电压有效值及失真度进行测量;基于测周法实现50 Hz频率的测量,通过一块电压有效值转换芯片测量总电压有效值与谐波电压有效值,实现市电电压的测量,并通过计算获得失真度值;实验结果表明,该测量仪测量精度较高,频率测量误差小于0.1%,电压有效值测量误差控制在1%以内,失真度测量误差小于5%;该测量仪结构简单、性能稳定,可应用于电能质量监测系统。  相似文献   

12.
何煦 《应用光学》2016,37(1):80-86
口径2 m的高质量平面反射镜可用于大口径光电设备像质评价和性能检测,但受使用环境影响,平面反射镜的面形精度不易长期保持稳定,因此需要在使用前对其面形精度进行现场、快速校验,而常规的全口径或子孔径干涉检测均难以满足上述需求。由于反射镜面形在制造过程引入的中高频误差已处于稳定状态,环境扰动只引入低频像差,而选择子孔径斜率扫描再重构波面低频轮廓的方法较适于面形精度现场校验。提出双五棱镜配合双测角仪进行子孔径斜率同步差分测量的方法,可改善长测量周期内环境扰动引起的随机误差。并对测量设备光学、机械及控制系统进行设计,提出采用2台S-H传感器代替传统测角仪用于子孔径斜率测量的解决方法。验证试验结果表明,波面重构算法以及仪器测角精度可满足面形测量精度需求,其与ZYGO干涉仪测量结果的互差小于20 nm(RMS)。  相似文献   

13.
本文介绍一种蓝宝石加载单端短路谐振腔测量高温超导薄膜的方法,并对测量误差进行了较详细的分析.造成测量误差的主要因素有三个:系统无载品质因数Q0的测量误差,超导薄膜以外损耗品质因数Qother的实验误差,以及在谐振腔内超导薄膜的几何参数G的计算误差.大量的实验结果表明,本方法操作简便,重复性好,测量精度高,相对测量误差不超过10%.  相似文献   

14.
为了减小激光多普勒自主测速仪天线安装误差引起的测速误差,以多普勒频移原理为基础,通过旋转矩阵的复合变换推导出测速误差与安装误差间的函数关系,分析了三个安装误差角对三维测速精度的影响,并对旋转矩阵采用Bursa模型线性化后在整体最小二乘准则下给出安装误差角的最优估计,从而实现测速误差的补偿。仿真结果表明:测速误差随速度的增大而增大,影响纵向、横向测速精度的主要因素是偏航角,影响垂向测速精度的主要因素是纵倾角,补偿后三维测速误差显著减小。  相似文献   

15.
加窗后波前功率谱密度的计算值修正   总被引:2,自引:0,他引:2       下载免费PDF全文
 波前功率谱密度的数值计算会由于窗函数的使用引入较大的计算误差。通过对模拟的单一频率波前加窗前后的功率谱密度的理论计算,由傅里叶变换性质推导出了修正因子,并对波前频率与修正因子的关系进行了理论研究。结果表明,在一定的波前频率及误差范围内,对加汉宁窗后1维功率谱密度的计算结果乘上一个常量8/3即可实现简单有效地修正。  相似文献   

16.
提出一种针对轴向B-dot束流偏角探测器信号的频域处理方法,从探测器本身的频域响应出发,并从探测器信号的频谱中提取有效信息,能够一定程度上消除束流横向偏移对偏角测量的干扰。该方法是对时域分析法处理轴向B-dot信号的一种补充,相比于时域法的一阶近似,对信号频谱的处理更接近对复杂真实情况的近似,但并未从根本上解决由安装误差等原因导致束流横向偏移而带来的测量不准确。从标定试验台测试结果来看,该方法的测试精度与时域法相当,约1mrad。  相似文献   

17.
Accuracy of acoustic voice analysis is influenced by the quality of recording. Lately, articles have suggested that soundcards perform equivalently to specialized professional-grade data acquisition (DA) systems. The purpose of this study was to investigate the influence of DA environment (DA system and microphone) on acoustic voice quality measurement (VQM) while balancing for gender, age, intersubject and intrasubject variability, and analysis software. More specifically, the relative performance of different hardware environments and the relationship between their technical characteristics and VQM performance was investigated. The discretization error and the effective dynamic range of the different DA environments were measured. We used 3 software systems to record and measure separately 2000 acoustic samples of sustained phonation for fundamental frequency, jitter, and shimmer. Analyses of variance (ANOVA) were performed with these parameters as the dependent variables. The results of the study suggested that professional-grade DA hardware is strongly recommended to provide accurate and valid voice assessment. The fundamental frequency measurement differences across DA environments were highly correlated to the discretization error (r=1.00), whereas jitter and shimmer were highly correlated to the effective dynamic range of the DA environments (r=-0.68 and r=-0.86, respectively).  相似文献   

18.
一种改进的载波电子散斑干涉处理方法   总被引:10,自引:6,他引:4  
刘诚  阎长春  高淑梅 《光子学报》2005,34(2):214-217
提出了一种新的载波电子散斑干涉的处理方法,该方法将载波所形成的直条纹和包含物体变形信息的弯曲条纹在频域直接比较, 避免了传统载波干涉方法中的载波频率计算和由此带来的误差. 因此在准确程度和方便性方面都有明显改进. 本文在给出理论分析的同时进行了实验验证.  相似文献   

19.
调制偏振光可以作为空间方位信息的载体,实现方位角度信息的测量,在军事、航天、生物医药等领域有广泛的应用前景。文章阐述了基于磁光调制偏振光的方位失调角测量原理,针对原理中贝赛尔函数展开带来的失调角测量误差,详细推导了截取不同项数时失调角的计算公式。仿真结果表明:随着贝赛尔函数展开式截取项数的增加,失调角的测量误差越来越小;截取二倍频信号与三倍频信号的测量误差相当,但符号相反;截取项数高于四倍频信号后,误差基本保持不变。因此利用磁光调制偏振光进行方位失调角测量时,贝赛尔函数展开式截取项数不易超过四倍频信号。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号