首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Panel-type sound absorbers are commonly used to absorb low-frequency sounds. Recently, a new type of panel/membrane absorbers has been proposed as a next-generation sound absorber free from environmental problems. On the other hand, it is known that placing a honeycomb structure behind a porous layer can improve sound absorption performance and a similar effect can be obtained for microperforated-panel absorbers. Herein, the sound absorption characteristics of a panel sound absorber with a honeycomb in its back cavity are theoretically analyzed. The numerical results are used to discuss the variations in the sound absorption characteristics due to the honeycomb as well as the mechanism for sound absorption.  相似文献   

2.
Because microperforated panels (MPPs) can provide wide-band sound absorption without fibrous and porous materials, they are recognized as next-generation absorption materials. The fundamental absorbing mechanism is Helmholtz-resonance absorption due to the perforations and air-back cavity. Consequently, MPPs are usually placed in front of rigid-back walls. However, one of the authors has proposed MPP space sound absorbers without backing structures. Among these space absorbers, cylindrical MPP space absorbers and rectangular MPP space absorbers are advantageous due to their design flexibility and easy-to-use properties. Although their performances have been investigated experimentally, it is necessary to predict their absorption characteristics to develop improved shapes and efficient designs. Herein their absorption characteristics are numerically predicted using the two-dimensional boundary element method, and the applicability of a numerical method as a design tool to sufficiently predict the performance of MPP space absorbers is discussed.  相似文献   

3.
Because microperforated panels (MPPs), which can be made from various materials, provide wide-band sound absorption, they are recognized as one of the next-generation absorption materials. Although MPPs are typically placed in front of rigid walls, MPP space sound absorbers without a backing structure, including three-dimensional cylindrical MPP space absorbers (CMSAs) and rectangular MPP space absorbers (RMSAs), are proposed to extend their design flexibility and easy-to-use properties. On the other hand, improving the absorption performance by filling the back cavity of typical MPP absorbers with porous materials has been shown theoretically, and three-dimensional MPP space absorbers should display similar improvements. Herein the effects of porous materials inserted into the cavities of CMSAs and RMSAs are experimentally investigated and a numerical prediction method using the two-dimensional boundary element method is proposed. Consequently, CMSAs and RMSAs with improved absorption performances are illustrated based on the experimental results, and the applicability of the proposed prediction method as a design tool is confirmed by comparing the experimental and numerical results.  相似文献   

4.
Microperforated panel (MPP) absorbers have been widely used in noise reduction and are regarded as a promising alternative to the traditional porous materials. However, the absorption bandwidth of a single-layer MPP is insufficient to compete with the porous materials. In order to improve the sound absorption ability of the single-layer MPP, a composite MPP sound absorber with membrane cells (MPPM) is introduced. Sound absorption properties of the MPPM are studied by the impedance tube experiment. Results show that the membranes have a significant influence on the sound impedance. The sound absorption performance of MPPM gradually increases with the increase of the membrane area. The single-layer MPP with some small area membrane cells may have the same effect and single large area membranes. By adjusting the size of the membrane cells, one can implement a sound absorber with a wider absorption bandwidth and higher absorption peaks than the single-layer MPP.  相似文献   

5.
There is currently considerable interest in developing sustainable absorbers, either from biomass materials or recycled materials, and it is the former that is the subject of this paper. A number of potential candidate materials are available from the biomass in the form of organic fibres. Non-fibrous materials, such as configurations of whole straw or reed, can also act as sound absorbers. A combination of impedance tube and reverberation chamber measurements have been carried out for a number of biomass materials and the effectiveness of current models for the prediction of the absorptive properties of natural fibres has been investigated. Examination of the acoustical characteristics of a range of natural fibres has confirmed their effectiveness as porous sound absorbers and also the limitations of current models for predicting their performance. Examination of the acoustical performance of materials consisting of different configurations of whole reeds and straws has revealed that these also possess considerable potential for application as broadband sound absorbers with particularly good low frequency absorption characteristics. The combination of natural fibres and whole reeds offer the possibility of developing a range of sustainable absorbers which act very effectively across the complete audio frequency range.  相似文献   

6.
For modeling of jute as acoustic material, knowledge of its non-acoustical parameters like porosity, tortuosity, air flow resistivity, thermal and viscous characteristic lengths is a prime requisite. Measurement of these non-acoustical parameters is not straightforward and involves a dedicated measurement setup. So in order to overcome this issue, the inverse acoustical characterization can be used. In this paper, the particle swarm optimization method (PSO) is used as an optimization method. This method estimates the non-acoustical parameters of jute material in felt form by minimizing the error between experimental and theoretical sound absorption data. In this work, the impedance prediction models for fibrous materials like Johnson–Champoux–Allard model with rigid and limp frame and Garai–Pompoli model is used for sound absorption coefficient calculation by the transfer matrix method along with the PSO. The inverse estimated non-acoustical parameters for jute material are then compared with estimated and experimentally measured parameters for jute felts. Using these inversely predicted parameters, sound absorption of multilayer sound absorbers is also studied.  相似文献   

7.
This paper presents a method to predict the reverberation absorption coefficient of a finite-size membrane absorbers composed of a single- or double-leaf membrane structure of various configurations. In order to predict the sound absorptivity of such an absorber, it is needed to consider that sound is incident from both sides of the absorber, which has not been accounted for the previous studies on membrane absorbers. The edge effect also needs to be considered if the absorber is rather small. The present method is established based on the theory for absorbers hanged in a reverberation chamber developed by Fujiwara and Makita [J Acoust Soc Jpn (E) 1980;1:37-45]. The same theory requires the fraction of energy dissipation in the absorber, which can be obtained by the difference of absorption and transmission coefficients, and the difference is calculated by the theories for various membrane structures presented in the authors’ previous work. An experimental study was also conducted to validate the present method: the predicted values showed good agreement with the measured ones. The numerical examples calculated by the present method are also presented to discuss the effect of the various control parameters, and it is suggested how to improve the sound absorption performance of double-leaf membrane absorbers with a permeable and an impermeable leaves.  相似文献   

8.
Theoretical and experimental investigations on the performance of micro-perforated -panel absorbers are reviewed in this paper. By reviewing recent research work, this paper reveals a relationship between the maximum absorption coefficient and the limit of the absorption frequency bandwidth. It has been demonstrated that the absorption frequency bandwidth can be extended up to 3 or 4 octaves as the diameters of the micro-holes decrease. This has become possible with the development of the technologies for manufacturing micro-perforated panels, such as laser drilling, powder metallurgy, welded meshing and electro-etching to form micrometer order holes. In this paper, absorption characteristics of such absorbers in random fields and in high sound intensity are discussed both theoretically and experimentally. A new absorbing structure based on micro-perforated-panel absorbers demonstrate experimentally high sound absorption capability. This review shows that the micro-perforated-panel absorber has potentials to be one of ideal absorbing materials in the 21st century.  相似文献   

9.
The paper discusses the sound absorptive performance of a porous material with meso-perforations inserted in a rectangular waveguide using a numerical hybrid adaptive finite element-modal method. Two specific applications are investigated: (i) the improvement of porous materials noise reduction coefficient using meso-perforations (ii) the effects of lateral air gaps on the normal incidence sound absorption of mono-layer and two-layer porous materials. For the first application, a numerical design of experiments is used to optimize the sound performance of a porous material with meso-perforations with a reduced number of numerical simulation. An example in which the optimization process is carried out on the thickness and size of the perforation is presented to illustrate the relevance of the approach. For the second application, a set of twenty fibrous materials spanning a large flow resistivity range is used. Practical charts are proposed to evaluate the influence of air gaps on the average sound absorption performance of porous materials. This is helpful to both the experimenter regarding characterization of porous material based on Standing Wave Tube measurements and for the engineer to quantifying the impact of air gaps and for designing efficient absorbers.  相似文献   

10.
高声压级时多孔金属板的吸声特性研究   总被引:6,自引:0,他引:6  
彭锋  王晓林  孙艳  常宝军  刘克 《声学学报》2009,34(3):266-274
针对高声压级下有限厚度多孔金属板在线性阻抗背衬条件下(背衬表面声压与声质点速度为线性关系)的吸声问题,提出了一个描述不同声压级下材料层法向吸声性能的一维模型,并给出求解材料层内部声质点速度的线化与差分方法,以预测多孔金属板在高声压级下的非线性吸声特性。在阻抗管中对两块多孔金属板进行了声学测试,得到了材料层法向表面阻抗和吸声系数随入射声压级变化的实验结果。研究表明:实验与理论预测符合良好,验证了模型与数值方法的正确性。本文所提原理和方法,可用于一般硬质多孔材料。   相似文献   

11.
The sound absorption mechanism of microperforated panel (MPP) absorbers and panel/membrane-type absorbers is both based on a certain resonance system and utilising its resonance effect. However, the relationship between the absorption mechanisms of MPPs and panel/membrane-type absorbers has not been discussed: it is not clarified whether they can occur simultaneously, or how they interfere each other. On the other hand, in a previous study there is an attempt to cause both absorption mechanisms simultaneously. In this paper, using an electro-acoustical equivalent circuit model, their sound absorption mechanisms and their relationship are discussed. In this study, three cases are considered: (1) the case in which only the mass reactance of the MPP is considered, (2) the case in which the losses of the panel is considered, and (3) the case in which the sound absorption of the back wall surface is considered. The results suggest that the microperforated panel absorption, which is Helmhotz-type resonance, and the panel/membrane-type absorption can be regarded as phenomena of the same kind which can be smoothly transformed into each other by changing a parameter, and can be consistently modelled and comprehensively discussed.  相似文献   

12.
Perforated panel structures have a wide potential in underwater applications. However, up to now there has been little related research. The acoustic impedance of an underwater perforated panel is obtained based on the theories for air perforated panel sound absorption. In this paper sound transmission characteristics of underwater perforated panel structures are theoretically analyzed by the transfer matrix method. A formula for normal incidence sound transmission coefficients is given. The main factors that have effects on the acoustic transmission coefficient are analyzed by numerical simulations. The perforated panel structures made by ourselves are tested in a standing-wave tube by the four-sensor transfer-function method. The experimental results are well in accord with the results obtained by the numerical method, which proves that the theoretical analysis is correct. This paper has provided theoretical and experimental bases for the design of underwater perforated panel structures.  相似文献   

13.
含三聚氰胺多孔材料分层复合介质吸声特性*   总被引:1,自引:1,他引:0       下载免费PDF全文
白聪  沈敏 《应用声学》2019,38(1):76-84
三聚氰胺泡沫材料是一种具有高开孔率的多孔材料,具备优良的吸音、防火隔热及环保性能,可以作为吸声材料与弹性板、空腔介质形成复合结构,在建筑、航空、交通工具等工程领域有广泛的应用。该文基于Biot理论和分层介质在交界面处的不同边界条件,建立非均匀复合介质背衬刚性壁面结构的理论声学模型,详细分析了多孔材料布局对复合结构吸声特性的影响。该文理论模型计算的结果与阻抗实验得到的垂直入射吸声系数基本一致,验证了理论模型的正确性。结果表明:在多孔材料前面增加空气层可以改善高频吸声特性;在多孔材料后面增加空气层可以改善复合结构低频吸声特性。通过合理配置多孔材料,可以在应用需求频段上达到满意的吸声效果。  相似文献   

14.
Microperforated panel (MPP) absorbers have been widely used in noise reduction and are regarded as a promising alternative to the traditional porous materials. However, the absorption bandwidth of a single-layer MPP is insufficient to compete with the porous materials. In order to improve the sound absorption ability of the single-layer MPP, MPP mounted with Helmholtz resonators (MPPHR) is introduced. Based on the MPP, Helmholtz resonators theory and electro-acoustical equivalent circuit principle, sound absorption properties of MPPHR are studied. Simulation and experimental results show that MPPHR have two peak frequencies and one anti-resonant frequency. The low-frequency peak is dependent on the Helmholtz resonators, while the high frequency peak is close to the peak of the single-layer MPP. The low-frequency sound absorption peaks move to low frequency with the neck length and the volume of Helmholtz resonators increasing. The high-frequency sound absorption peaks move to high frequency with the volume of Helmholtz resonators cavity increasing. Multiple Helmholtz resonator parallel MPP structure can provide more sound absorption than single MPPHR at low frequency range due to the introduction of more additional sound absorption peaks.  相似文献   

15.
Closed-cell metallic foams are known for their rigidity, lightness, thermal conductivity as well as their low production cost compared to open-cell metallic foams. However, they are also poor sound absorbers. Similarly to a rigid solid, a method to enhance their sound absorption is to perforate them. This method has shown good preliminary results but has not yet been analyzed from a microstructure point of view. The objective of this work is to better understand how perforations interact with closed-cell foam microstructure and how it modifies the sound absorption of the foam. A simple two-dimensional microstructural model of the perforated closed-cell metallic foam is presented and numerically solved. A rough three-dimensional conversion of the two-dimensional results is proposed. The results obtained with the calculation method show that the perforated closed-cell foam behaves similarly to a perforated solid; however, its sound absorption is modulated by the foam microstructure, and most particularly by the diameters of both perforation and pore. A comparison with measurements demonstrates that the proposed calculation method yields realistic trends. Some design guides are also proposed.  相似文献   

16.
The paper presents numerical analysis - involving an advanced multiphysics modeling - of the concept of active porous composite sound absorbers. Such absorbers should be made up of a layer or layers of poroelastic material (porous foams) with embedded elastic inclusions having active (piezoelectric) elements. The purpose of such active composite material is to significantly absorb the energy of acoustic waves in a wide frequency range, particularly, at lower frequencies. At the same time the total thickness of composite should be very moderate. The active parts of composites are used to adapt the absorbing properties of porous layers to different noise conditions by affecting the so-called solid-borne wave - originating mainly from the vibrations of elastic skeleton of porous medium - to counteract the fluid-borne wave - resulting mainly from the vibrations of air in the pores; both waves are strongly coupled, especially, at lower frequencies. In fact, since the traction between the air and the solid frame of porous medium is the main absorption mechanism, the elastic skeleton is actively vibrated in order to adapt and improve the dissipative interaction of the skeleton and air in the pores. Passive and active performance of such absorbers is analyzed to test the feasibility of this approach.  相似文献   

17.
水下微穿孔吸声体结构设计与试验研究   总被引:5,自引:0,他引:5  
罗忠  朱锡  梅志远  李浩 《声学学报》2010,35(3):329-334
根据马大猷院士的微穿孔板(MPP)理论,提出在可设计的夹芯复合隐身结构的空腔中附加微穿孔板层的水下微穿孔吸声体。基于微穿孔板的精确计算理论及水下声隐身结构的特点,考虑空腔深度、穿孔板厚度、穿孔直径及穿孔率等对微穿孔板吸声性能的影响,对水下微穿孔吸声体进行了结构设计。利用脉冲声管法对水下微穿孔吸声体试样的吸声系数进行了测量,结果表明:水下微穿孔吸声体有效地拓宽了低频吸声频带,其微穿孔板结构参数的影响规律也与理论分析一致;对于多种吸声机理并存的水下微穿孔吸声体的空腔个数、形状及谐振特性等也是影响吸声性能的重要因素,在实际的工程应用中必须结合所关心的频带对水下微穿孔吸声体进行匹配优化设计。   相似文献   

18.
王卫辰  冯军  马然 《声学学报》2021,46(5):721-729
微穿孔板几何参数的耦合性及其对整体吸声性能的影响,对于设计微穿孔板吸声体和优化其工作性能具有指导作用。根据微穿孔板吸声体基本理论,研究了穿孔率和穿孔直径双参数耦合作用下微穿孔板吸声体的整体吸声性能。穿孔率和穿孔直径之间的耦合性与其本身取值密切相关,而与板厚和板后腔深无明显关系;在穿孔率-穿孔直径参数域上,吸声体存在吸声系数为1.0的吸收峰,整体吸声性能随穿孔率或穿孔直径从小到大变化,呈现出先增强后减弱的变化趋势。该结论能够准确解释微穿孔板受粉尘污染后吸声性能的变化规律和演变路径。论文的工作为设计微穿孔板吸声体提供了一种新的理论依据和实施方法。   相似文献   

19.
A numerical study of double-leaf microperforated panel absorbers   总被引:1,自引:0,他引:1  
Microperforated panel (MPP) absorbers are promising as a basis for the next-generation of sound absorbing materials. Typically, they are backed by an air-cavity in front of a rigid wall such as a ceiling or another interior surface of a room. Indeed, to be effective, MPP absorbers require the Helmholtz-type resonance formed with the backing cavity. Towards the creation of an efficient sound-absorbing structure with MPPs alone, the acoustical properties of a structure composed of two parallel MPPs with an air-cavity between them and no rigid backing is studied numerically. In this double-leaf MPP (DLMPP) structure, the rear leaf (i.e., the MPP remote from the incident sound) plays the role of the backing wall in the conventional setting and causes resonance-type absorption. Moreover, since a DLMPP can work efficiently as an absorber for sound incidence from both sides, it can be used efficiently as a space absorber, e.g., as a suspended absorber or as a sound absorbing panel. The sound absorption characteristics of the double-leaf MPP are analysed theoretically for a normally incident plane wave. The effects of various control parameters are discussed through a numerical parametric study. The absorption mechanisms and a possible design principle are discussed also. It is predicted that: (1) that a resonance absorption, similar to that in conventional type MPP absorbers, appears at medium-to-high frequencies and (2) that considerable “additional” absorption can be obtained at low frequencies. This low-frequency absorption is similar to that of a double-leaf permeable membrane and can be an advantage compared with the conventional type of MPP arrangement.  相似文献   

20.
在传统单一孔隙率多孔材料中引入宏观尺度的周期性梯度穿缝结构设计,构造出梯度穿缝型双孔隙率多孔材料,其包含多孔材料基体微孔尺度与穿缝尺度两个尺度。采用分层等效的理论建模方法,将复杂梯度渐变问题变为多层均匀等效层叠加问题。针对不同特征尺寸的多孔材料薄层,分别采用低、高两种渗透率对比度双孔隙率理论,给出了其等效密度和动态压缩系数,再应用传递矩阵方法得到了相邻薄层之间的声压和质点速度传递关系并求得其表面声阻抗,从而建立了梯度穿缝型双孔隙率多孔材料的吸声理论模型。发展了多尺度材料声学有限元数值模型,在所考虑的100~3000 Hz频段范围内数值模拟结果完全吻合理论模型结果。理论与模拟分析了多尺度结构参数对双孔隙率多孔材料吸声性能的影响,结果表明引入多尺度梯度结构设计能够显著提高单一孔隙率多孔材料的吸声性能,且穿缝尺度比穿缝梯度影响更为显著;精细数值模拟获得的声压和能量密度分布云图揭示了多尺度结构设计的吸声增强机制。该工作可用于指导双孔隙率多孔材料的多尺度结构设计,从而提高多孔材料的中低频吸声性能。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号