首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
水下微穿孔吸声体结构设计与试验研究   总被引:5,自引:0,他引:5  
罗忠  朱锡  梅志远  李浩 《声学学报》2010,35(3):329-334
根据马大猷院士的微穿孔板(MPP)理论,提出在可设计的夹芯复合隐身结构的空腔中附加微穿孔板层的水下微穿孔吸声体。基于微穿孔板的精确计算理论及水下声隐身结构的特点,考虑空腔深度、穿孔板厚度、穿孔直径及穿孔率等对微穿孔板吸声性能的影响,对水下微穿孔吸声体进行了结构设计。利用脉冲声管法对水下微穿孔吸声体试样的吸声系数进行了测量,结果表明:水下微穿孔吸声体有效地拓宽了低频吸声频带,其微穿孔板结构参数的影响规律也与理论分析一致;对于多种吸声机理并存的水下微穿孔吸声体的空腔个数、形状及谐振特性等也是影响吸声性能的重要因素,在实际的工程应用中必须结合所关心的频带对水下微穿孔吸声体进行匹配优化设计。   相似文献   

2.
不规则孔微穿孔板几何参数无法直接获知,造成吸声性能计算困难,故提出一种微穿孔板几何参数估算方法。将不规则孔等效处理为圆孔,利用马氏理论关于圆孔微穿孔板的基本理论,建立了微穿孔板几何参数估算模型;将参数估算结果用于吸声性能预测,理论计算与实验结果吻合。根据微穿孔板几何参数对高吸声性能区域的影响,探讨了马氏理论适用极限与微穿孔板几何参数的关系,以及微穿孔板受粉尘污染后吸声性能演变规律。将微穿孔板参数点取在面积较大的高吸声性能区域中间部位,可获得较大的马氏理论适用极限;微穿孔板参数点位于高吸声性能区域右上部位时,一定程度的粉尘污染不会降低吸声性能.   相似文献   

3.
微穿孔板吸声结构是由微穿孔板与板后空腔组成的共振吸声结构,被认为是继多孔吸声材料之后发展起来的最有吸引力的吸声结构,其吸声特性与结构参数孔径d、板厚t、孔距b及空腔深度D有关,如何按需设计一个有效的微穿孔板吸声结构已成为目前研究的热点。本文从微穿孔板吸声结构和吸声特性混合设计的角度出发,使用面向对象的编程语言C++开发了微穿孔板吸声结构设计平台。与以往设计方法不同,本文开发的软件平台综合考虑了结构参数和吸声特性参数两方面的限制,根据实际应用要求平衡微穿孔板吸声结构的最大吸声系数与吸声带宽之间的制约关系,并以饱满的吸声曲线为目标,提供满足混合设计要求的优化结构参数。  相似文献   

4.
钱玉洁  娄思成  张杰 《声学学报》2023,48(1):238-248
提出并研究一种利用两板间微缝进行阻尼耦合的双层微穿孔板(DMPP)吸声体。该吸声体在两层微穿孔板(MPP)之间形成一个宽度小于1mm的微缝,因此其阻尼不仅可由板上的微穿孔提供,还可由两板之间形成的微缝提供。采用声电类比法建立了DMPP转移阻抗的理论模型,并进行实验验证,结果表明理论计算结果与实验吻合较好。然后利用建立的理论模型,对单层MPP和DMPP吸声体的吸声性能进行了对比研究,结果表明,相比于单层MPP,DMPP可以利用微缝提供的阻尼显著改善吸声性能,同时减少实际板厚。最后,对DMPP吸声体的吸声性能及其几何参数的关系进行研究,结果表明,当保持其它结构参数不变时,微缝宽度对DMPP吸声系数的提高存在一个最优值,超过或低于此值会导致吸声系数下降。  相似文献   

5.
微穿孔板吸声体的准确理论和设计   总被引:50,自引:4,他引:46  
提出以等效电路的为基础的微穿孔板吸声体的准确理论。吸声体的特性参数是板的相对声阻r,穿孔直径d和共振频率f0,后二者合成穿孔板常数,它与r决定微穿孔板吸声体的结构和频率特性。吸声频带半宽△f/f0的最大值为(4/π)tan-1(1+r),这是k值趋近于零时的极限,只要k小于1,相差也不大,这时空腔厚度接近四分之一波长。可见r值大时,带宽可达到极为可观的程度.k值大时,吸收带宽大为降低,同时空腔节厚度将成为比波长小得多的值。文中讨论微穿孔极吸声体的一般特性。  相似文献   

6.
关于微穿孔板吸声体频带宽度极限的讨论   总被引:2,自引:1,他引:1       下载免费PDF全文
焦风雷  刘克  丁辉 《应用声学》2001,20(6):36-40
依据马大猷教授的微穿孔板吸声体准确理论,利用计算机辅助设计对于该结构频带宽度极限情况从理论上进行了讨论,把极限频宽和最大吸声系数的制约关系量化,并得到此情况下应用于低频或高频环境孔径的选用范围,以及此情况下板厚和穿孔率与传统观念不同的特点。以上分析结果以及所提供的结构参数为宽频带微穿孔板的具体设计提供有价值的参考。  相似文献   

7.
微穿孔板吸声结构水下应用研究   总被引:2,自引:0,他引:2       下载免费PDF全文
王泽锋  胡永明  倪明  罗洪 《应用声学》2008,27(3):161-166
马大猷教授提出的微穿孔板吸声结构在空气噪声降低和隔离方面得到了广泛的应用,但未见水下应用的相关研究和报道。本文将空气中微穿孔板理论应用到水中,得到了水下微穿孔板吸声结构的吸声公式。通过理论分析,得出了微穿孔板结构直接应用于水中无法获得宽频吸收的结论。提出了通过匹配液将微穿孔板间接应用到水下的设想。设计了单层板和双层板吸声结构,并对它们的吸声特性进行了理论分析与仿真。结果表明,本文设计的微穿孔板吸声结构在水中能够获得优于空气中的宽频带吸声效果。实验测量了自制的微穿孔板吸声结构,吸声系数的测量值与理论曲线基本吻合,从而验证了理论分析的正确性。  相似文献   

8.
微穿孔板吸声体的研究进展   总被引:5,自引:0,他引:5  
简述了马大猷教授的微穿孔板基本理论、微穿孔板吸声体在扩散声场以及在高声强环境下的理论要点。比较详细地讨论了30年来与马大猷教授所提理论相对应的实验研究结果及应用发展情况。基于马大猷教授的基本理论,提出了一种新的相关衍生结构——管束微穿孔板。对微穿孔板吸声体的发展趋势做了展望。表明:微穿孔板吸声体将成为新世纪的绿色理想吸声材料。  相似文献   

9.
水下弹性微穿孔吸声结构吸声系数研究   总被引:2,自引:0,他引:2       下载免费PDF全文
利用模态叠加法建立了水介质微穿孔板的数学模型,基于声电类比法得到其等效电路模型。研究了弹性微穿孔板和弹性背腔对垂直入射吸声系数的影响。与空气介质中的微穿孔板不同,水下微穿孔板因结构阻抗不足,难以取得满意的吸声效果,为此提出了增强型微穿孔吸声结构,并在水介质阻抗管内对理论结果予以验证。结果表明,随着增强型弹性微穿孔板弯曲刚度的增大,其在[20,2000]Hz范围内的平均吸声系数得到提高,逐步趋近于刚性微穿孔板的结果,弹性背板使微穿孔吸声结构的吸声峰向低频移动,低频吸声效果得到提高。   相似文献   

10.
依据马大猷教授的微穿孔板基本理论,在对微穿孔板吸声结构完成吸声理论计算结果的基础上,进行参数选择并设计了微穿孔吸声反射板结构,用于新建的阶梯教室中。分析了这种微穿孔吸声反射板结构在阶梯教室中的声反射和声吸收的性能。经现场测试与主观评价,表明了此方法对阶梯教室控制音质效果的有效性和可行性。  相似文献   

11.
The geometric parameters of micro-perforated panels with irregular holes cannot be directly known,making it difficult to calculate the sound absorption performance.Therefore,we propose a method of estimating the geometric parameters of micro-perforated panels.The irregular holes are treated as equivalent circular ones,and the model of estimating the geometric parameters is established by using Maa's theory about the panel with circular holes.The result of the parameter estimation of a type of micro-perforated panel is used to predict the absorption performance,resulting in good agreement with experiments.According to the influences of the geometric parameters of the panel on the high absorption region,we discuss the relationship between the application limit of Maa's theory and the geometric parameters,and investigate the evolution law of the sound absorption performance when the panel is polluted by dust.If the parameters of the panel are designed near the center of the high absorption region,large value of the application limit of Maa's theory can be obtained;and if the parameters are located in the upper right part of the high absorption region,a certain degree of dust pollution of the panel does not decrease the sound absorption performance.  相似文献   

12.
Theoretical and experimental investigations on the performance of micro-perforated -panel absorbers are reviewed in this paper. By reviewing recent research work, this paper reveals a relationship between the maximum absorption coefficient and the limit of the absorption frequency bandwidth. It has been demonstrated that the absorption frequency bandwidth can be extended up to 3 or 4 octaves as the diameters of the micro-holes decrease. This has become possible with the development of the technologies for manufacturing micro-perforated panels, such as laser drilling, powder metallurgy, welded meshing and electro-etching to form micrometer order holes. In this paper, absorption characteristics of such absorbers in random fields and in high sound intensity are discussed both theoretically and experimentally. A new absorbing structure based on micro-perforated-panel absorbers demonstrate experimentally high sound absorption capability. This review shows that the micro-perforated-panel absorber has potentials to be one of ideal absorbing materials in the 21st century.  相似文献   

13.
In order to measure the acoustic characteristics of the sound source in a duct system effectively without destroying the main duct,micro-perforated panel structures were applied in the new method by attaching the side branch tubes.The effect and influence to change the acoustical impedance of the loads in a duct system was analyzed and simulated for using one layer and double-layer micro-perforated panel and back cavities with different parameters such as panel thickness,hole diameter,perforation ration,back depth and so on.The results show that the load’s resistance can be changed efficiently by adjusting panel thickness,hole diameter, perforation ratio,the ratio of cross-section between ducts and tubes and other parameters;and the load’s reactance can be changed efficiently by adjusting back depth and distance between micro-perforated panel and main duct.It is also found that combinative usage of one layer and double-layer of these structures can change the reactance substantially in broad frequency domain.The method and the efficient performance of the structures with micro-perforated panel in the measurement were verified by the experiment under the situations of flow and no-flow. Finally,suggestions to design and apply these structures in the above-mentioned method in application were given.  相似文献   

14.
This paper is concerned with the use of a perforated panel with extended tubes (PPET) to improve the sound absorption confined to low frequencies. In comparison with a micro-perforated panel (MPP), the sound absorption can be significantly improved by using the PPET at the expense of the bandwidth of the sound absorption. A particular configuration combining four parallel-arranged PPETs with different cavities is introduced to achieve a wider bandwidth of the sound absorption at low frequencies. The analysis is extended to the combination of three parallel-arranged PPETs and a MPP to further increase the bandwidth of the sound absorption. A theoretical model is described to predict the sound absorption coefficient and the simulated annealing method is introduced to the proposed absorbers, allowing optimization of the overall performance. The theory with experimental validations demonstrates that the proposed configurations offer a potential improvement of more than one octave in the bandwidth of the sound absorption at low frequencies.  相似文献   

15.
Micro-perforated panel absorber is used in many noise control applications as a next-generation absorbing material. Perforation shapes of micro-perforated panel studied are usually circular in the past. However, in practice, the perforations are often non-circular or irregular shape due to manufacturing techniques. Sound absorption coefficient and absorption bandwidth of the micro-perforated panel absorber may be further improved, when the perforations in shape are changed. In view of the existing exact solutions of sound propagation in tubes, the simple formulas of specific acoustic impedances of the tubes for triangle and square cross-sectional perforations are derived. Mass reactance end correction of the micro-perforated panel is obtained based on the sound radiation of a shaped piston. The specific acoustic impedance ratio of the micro-perforated panel absorber is calculated and analyzed, which can predict its sound absorption bandwidth. Finally, for closed perforations, the influences of the perforations in shape (including triangle, circle, square and irregular circle) on sound absorption of the MPP absorber are discussed in collaboration with FE simulations.  相似文献   

16.
Panel-type sound absorbers are commonly used to absorb low-frequency sounds. Recently, a new type of panel/membrane absorbers has been proposed as a next-generation sound absorber free from environmental problems. On the other hand, it is known that placing a honeycomb structure behind a porous layer can improve sound absorption performance and a similar effect can be obtained for microperforated-panel absorbers. Herein, the sound absorption characteristics of a panel sound absorber with a honeycomb in its back cavity are theoretically analyzed. The numerical results are used to discuss the variations in the sound absorption characteristics due to the honeycomb as well as the mechanism for sound absorption.  相似文献   

17.
This paper presents theoretical and experimental results on the influence of panel vibrations on the sound absorption properties of thin micro-perforated panel absorbers (MPPA). Measurements show that the absorption performance of thin MPPAs generates extra absorption peaks or dips that cannot be understood assuming a rigid MPPA. A theoretical model is established that accounts for structural-acoustic interaction between the micro-perforated panel and the backing cavity, assuming uniform conservative boundary conditions for the panel and separable coordinates for the cavity cross-section. This model is verified experimentally against impedance tube measurements and laser vibrometric scans of the cavity-backed panel response. It is shown analytically and experimentally that the air-frame relative velocity is a key factor that alters the input acoustic impedance of thin MPPAs. Coupled mode analysis reveals that the two first resonances of an elastic MPPA are either panel-cavity, hole-cavity, or panel-controlled resonances, depending on whether the effective air mass of the perforations is greater or lower than the first panel modal mass. A critical value of the perforation ratio is found through which the MPPA resonances experience a frequency "jump" and that determines two absorption mechanisms operating out of the transitional region.  相似文献   

18.
The sound absorption performance of a micro-perforated panel (MPP) absorber array at oblique incidence and in diffuse field is investigated both numerically and experimentally. The basic module of the MPP absorber array consists of four parallel-arranged MPP absorbers with different cavity depths, and the whole MPP absorber array is created by arranging the basic modules in a periodically repeating pattern. Results show that the influence of incidence angle mainly lies in two aspects. First, the parallel absorption mechanism breaks down at lower frequencies at oblique incidence than at normal incidence due to the non-compactness of the resonating MPP absorber, which becomes non-compact if the time delay of incident wave across it is comparable to or larger than π/2. Second, the equivalent acoustic impedance of the MPP varies with respect to incidence angle which in turn changes the sound absorption performance of the MPP absorber array. Influence of the azimuthal angle is insignificant. Because of mutual influence among the member MPP absorbers, the normal incidence sound absorption of the MPP absorber array can be noticeably different from that of the basic module tested in impedance tube. The measured sound absorption coefficients of a prototype specimen in reverberation room compare well with the numerical predictions. The extra sound absorption due to diffraction of sound at the free edges of test specimen is the most efficient around 500 Hz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号