首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
We present time-resolved and time-integrated spectroscopy of single InAs quantum dots grown in a GaAs matrix. We observe a number of interesting features in the spectra, including the zero field splitting of exciton and biexciton lines due to quantum dot asymmetry. By the application of an in-plane magnetic field, the normally optically active and inactive exciton states become mixed, enabling us to optically probe the normally inaccessible ‘dark’ states. Time resolved measurements on the mixed states show decay times several times longer than the exciton lifetime at zero field, which we show to be consistent with a dark exciton lifetime orders of magnitude longer than that for bright exciton.  相似文献   

2.
We report on photoluminescence measurements from a single InAs/GaAs quantum dot in magnetic fields up to 28 T. Mesa-patterned structure has been used to limit the number of investigated dots. Three pairs of Zeeman-split emission lines with the same effective g*-factor and diamagnetic shift have been observed. The attribution of the lines to recombination of a neutral exciton, a biexciton, and a charged exciton is discussed.  相似文献   

3.
We report about spatially resolved magneto-optical experiments on a self-assembled InGaAs quantum dot. Using electron beam lithograpy for patterning a metal shadow mask we can isolate a single dot. This allows us to study the optical response of a single dot as a function of excitation power and magnetic field. We investigate the influence of many body interaction in the emission spectra for different exciton occupation numbers of the dot. The diamagnetic/orbital shift as well as Zeeman splitting in a magnetic field can be fully resolved and are used to identify the observed emission lines. Further we report on absorption properties of the quantum dot as a function of magnetic field. We analyse in detail the phonon-assisted absorption process connected with the GaAs LO-phonon 36 meV above the single-exciton ground state.  相似文献   

4.
The magnetic state of a single magnetic ion (Mn2+) embedded in an individual quantum dot is optically probed using micro-spectroscopy. The fine structure of a confined exciton in the exchange field of a single Mn2+ ion (S=) is analyzed in detail. The exciton–Mn2+ exchange interaction shifts the energy of the exciton depending on the Mn2+ spin component and six emission lines are observed at zero magnetic field. The emission spectra of individual quantum dots containing a single magnetic Mn atom differ strongly from dot to dot. The differences are explained by the influence of the system geometry, specifically the in-plane asymmetry of the quantum dot and the position of the Mn atom. Depending on both these parameters, one has different characteristic emission features which either reveal or hide the spin state of the magnetic atom. The observed behavior in both zero field and under magnetic field can be explained quantitatively by the interplay between the exciton–Mn2+ exchange interaction (dependent on the Mn position) and the anisotropic part of the electron–hole exchange interaction (related to the asymmetry of the quantum dot).  相似文献   

5.

The quasi-exact properties of an exciton are investigated theoretically in the presence of an external magnetic field using the effective-mass approach in GaAs parabolic quantum dot. The energy spectrum is obtained analytically as a function of the dot radius, interaction strength and magnetic field. It is established that, a steady bound state of an exciton in the ground state exists under the effect of a strong magnetic field; also I noticed that the exciton binding energy decreases by increasing both the radius of the dot and the magnetic field strength and the reduction becomes pronounced for larger dots. As expected, it has been found that the exciton total energy decreases with increasing the size of the dot and it enhances by increasing the magnetic field. It appears that the exciton total energy strongly depends on the magnetic field for dots with big size. The magnetic field effect on the exciton size also has been studied. It is shown that the increase in the magnetic field leads to a reduction in the exciton size; due to magnetic field confinement, while the size of an exciton reach its bulk limit as the dot size increases. Moreover, it is shown that, if the dot radius is sufficiently large the oscillator strength saturates and it becomes insensitive to the magnetic field while the increase in the magnetic field gradually weakened the oscillator strength. I have calculated the ground-state distribution for both the electron and the hole. It is found that the localization of the electron/hole increases in the presence of a magnetic field. Moreover, the ground-state optical-absorption intensity is investigated. Finally, the dependence of the lowest five states of an exciton on both the dot radius and the magnetic field are discussed.

  相似文献   

6.
We present a study about the origin of the huge emission linewidths broadening commonly observed for wurtzite GaN/AlN quantum dots. Our analysis is based on a statistically significant number of quantum dot spectra measured by an automatized µ‐photoluminescence mapping system applying image recognition techniques. A clear decrease of the single quantum dot emission linewidths is observed with rising overall exciton emission energy. 8‐band k · p based model calculations predict a corresponding decrease of the built‐in exciton dipole moments with increasing emission energy in agreement with the measured behavior for the emission linewidths. Based on this proportionality we explain the particular susceptibility of nitride quantum dots to spectral diffusion causing the linewidth broadening via the linear quantum‐confined Stark effect. This is the first statistical analysis of emission linewidths that identifies the giant excitonic dipole moments as their origin and estimates the native defect‐induced electric field strength to ~2 MV/m. Our observation is in contrast to less‐polar quantum dot systems as e.g. arsenides that exhibit a naturally lower vulnerability to emission linewidth broadening due to almost negligible exciton dipole moments. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Semiconductor quantum dots, so-called artificial atoms, have attracted considerable interest as mesoscopic model systems and prospective building blocks of the “quantum computer”. Electrons are trapped locally in quantum dots, forming controllable and coherent mesoscopic atom- and moleculelike systems. Electrostatic definition of quantum dots by use of top gates on a GaAs/AlGaAs heterostructure allows wide variation of the potential in the underlying two-dimensional electron gas. By distorting the trapping potential of a single quantum dot, a strongly tunnel-coupled double quantum dot can be defined. Transport spectroscopy measurements on such a system charged with N=0,1,2,… electrons are presented. In particular, the tunnel splitting of the double well potential for up to one trapped electron is unambiguously identified. It becomes visible as a pronounced level anticrossing at finite source drain voltage. A magnetic field perpendicular to the two-dimensional electron gas also modulates the orbital excitation energies in each individual dot. By tuning the asymmetry of the double well potential at finite magnetic field the chemical potentials of an excited state of one of the quantum dots and the ground state of the other quantum dot can be aligned, resulting in a second level anticrossing with a larger tunnel splitting. In addition, data on the two-electron transport spectrum are presented.  相似文献   

8.
The energy spectra of low-lying states of an exciton in a single and a vertically coupled quantum dots are studied under the influence of a perpendicularly applied magnetic field. Calculations are made by using the method of numerical diagonalization of the Hamiltonian within the effective-mass approximation. We also calculated the binding energy of the ground and the excited states of an exciton in a single quantum dot and that in a vertically coupled quantum dot as a function of the dot radius for different vaJues of the distance and the magnetic field strength.  相似文献   

9.
Coherent spin precession of electrons and excitons is observed in charge tunable InP quantum dots under the transverse magnetic field by means of time-resolved Kerr rotation. In a quantum dot doped by one electron, spin precession of the doped electron in the quantum dot starts out of phase with spin precession of the doped electrons in a GaAs substrate just after a trion is formed and persists for more than 2 ns even after the trion recombines. Simultaneously spin precession of a trion (hole) starts. Observation of spin precession of both a doped electron and a trion (hole) confirms creating coherent superposition of an electron and a trion as the initialization process of spin of doped electrons in quantum dots. In a neutral quantum dot, the exciton spin precession starts out of phase with spin precession of the doped electrons in a GaAs substrate and the precession frequency does not converge to 0 at the zero field limit. It contains the electron–hole exchange interaction and corresponds to the splitting between bright and dark excitons under the transverse magnetic field.  相似文献   

10.
The energy spectra of low-lying states of an exciton in a single and a vertically coupled quantum dots arestudied under the influence of a perpendicularly applied magnetic field. Calculations are made by using the method ofnumerical diagonalization of the Hamiltonian within the effective-mass approximation. We also calculated the bindingenergy of the ground and the excited states of an exciton in a single quantum dot and that in a vertically coupledquantum dot as a function of the dot radius for different values of the distance and the magnetic field strength.  相似文献   

11.
We report on photoluminescence investigations of individual InAs quantum dots embedded in an AlAs matrix which emit in the visible region, in contrast to the more traditional InAs/GaAs system. Biexciton binding energies, considerably larger than for InAs/GaAs dots, up to 9 meV are observed. The biexciton binding energy decreases with decreasing dot size, reflecting a possible crossover to an antibinding regime. Exciton and biexciton emission consists of linearly cross polarized doublets due to a large fine structure splitting up to 0.3 meV of the bright exciton state. With increasing exciton transition energy the fine structure splitting decreases down to zero at about 1.63 eV. Differences with InAs/GaAs QDs may be attributed to major dot shape anisotropy and/or larger confinement due to higher AlAs barriers.  相似文献   

12.
The fine structure of the ground state exciton has been studied by magnetophotoluminescence spectroscopy of self-assembled In0.60Ga0.40As single quantum dots. This was realized by using lithography for fabricating mesa structures which contain only a single dot. Due to a dot geometry-induced symmetry breaking we are able to observe the dark exciton states in magnetic field besides the bright excitons. From the spin-splitting data values for the corresponding exciton g-factors are obtained. In addition, the electron–hole exchange energies are determined, which are compared to detailed numerical calculations.  相似文献   

13.
A systematic variation of the exciton fine-structure splitting with quantum dot size in single quantum dots grown by metal-organic chemical vapor deposition is observed. The splitting increases from to as much as with quantum dot size. A change of sign is reported for small quantum dots. Model calculations within the framework of eight-band theory and the configuration interaction method were performed. Different sources for the fine-structure splitting are discussed, and piezoelectricity is pinpointed as the only effect reproducing the observed trend.  相似文献   

14.
We have investigated magneto-optical properties of GaSb/GaAs self-assemble type II quantum dots by single dot spectroscopy in magnetic field. We have observed clear Zeeman splitting and diamagnetic shift of GaSb/GaAs quantum dots. The diamagnetic coefficient ranges from 5 to 30 μeV/T2. The large coefficient and their large distribution are attributed to the size inhomogeneity and electron localization outside the dot. The g-factor of GaSb/GaAs quantum dots is slightly larger than that of similar type I InGaAs/GaAs quantum dots. In addition, we find almost linear relationship between the diamagnetic coefficient and the g-factor. The linear increase of g-factor with diamagnetic coefficient is due to an increase of spin-orbit interaction with dot size.  相似文献   

15.
We report a new type of coupling between quantum dot excitons mediated by the strong single-photon field in a high-finesse micropillar cavity. Coherent exciton coupling is observed for two dots with energy differences of the order of the exciton-photon coupling. The coherent coupling mode is characterized by an anticrossing with a particularly large line splitting of 250 microeV. Because of the different dispersion relations with temperature, the simultaneous photonic coupling of quantum dot excitons can be easily distinguished from cases of sequential strong coupling of two quantum dots.  相似文献   

16.
We investigate the temperature dependence of photoluminescence from single and ensemble InAs/GaAs quantum dots systematically. As temperature increases, the exciton emission peak for single quantum dot shows broadening and redshift. For ensemble quantum dots, however, the exciton emission peak shows narrowing and fast redshift. We use a simple steady-state rate equation model to simulate the experimental data of photoluminescence spectra. It is confirmed that carrier-phonon scattering gives the broadening of the exciton emission peak in single quantum dots while the effects of carrier thermal escape and retrapping play an important role in the narrowing and fast redshift of the exciton emission peak in ensemble quantum dots.  相似文献   

17.
Exciton states in a pair of strongly coupled artificial asymmetric quantum dots (QDs) have been studied in magnetic fields up to B = 8T by means of photoluminescence spectroscopy. The QD molecules have been fabricated using a selective interdiffusion technique applied to asymmetric CdTe/(Cd,Mg,Mn)Te double quantum wells. The lateral confinement potential within the plane induced by the diffusion gives rise to effective zero-dimensional exciton localization. Incorporation of the Mn ions in only one dot results in a pair of QDs with a markedly different spin splitting. In contrast to a positive value of the exciton Lande g factor in nonmagnetic (Cd,Mg)Te-based single QDs, the ground exciton transition in the nonmagnetic QD demonstrates nearly zero g factor, thus, indicating a strong electron coupling between the dots. A new low-energy band with a strong red shift appears at high B signifying formation of the indirect exciton in accordance with our calculations. The text was submitted by the authors in English.  相似文献   

18.
A systematic dependence of excitonic properties on the size of self-organized InAs/GaAs quantum dots is presented. The bright exciton fine-structure splitting changes from negative values to more than 0.5 meV, and the biexciton binding energy varies from antibinding to binding, as the height of truncated pyramidal dots increases from 2 to above 9 InAs monolayers. A novel mode of metalorganic vapor phase epitaxy was developed for growing such quantum dots with precise shape control. The dots consist of pure InAs and feature heights varying in steps of complete InAs monolayers. Such dot ensembles evolve from a strained, rough two-dimensional layer with a thickness close to the critical value for the onset of the 2D–3D transition. Dots with a common height represent subensembles with small inhomogeneous broadening. Tuning of subensemble emission energy is achieved by varying the mean lateral extension of the respective QDs. Detailed knowledge of the structural properties of individual dots enable realistic k·p calculations to analyze the origin of the observed excitonic properties. The binding energies of charged and neutral excitons increase due to correlation by the gradually increasing number of bound states for increasing dot size. The monotonously increasing magnitude of the fine-structure splitting with dot size is shown to be caused by piezoelectricity. The identification of key parameters allows to tailor exciton properties, providing a major step towards the development of novel applications.  相似文献   

19.
Exciton states in self-assembled InP/In0.49Ga0.51P quantum dots subject to magnetic fields up to 50 T are calculated. Strain and band mixing are explicitly taken into account in the single-particle models of the electronic structure, while an exact diagonalization approach is adopted to compute the exciton states. Reasonably good agreement with magneto-photoluminescence measurements on InP self-assembled quantum dots is found. As a result of the polarization and angular momentum sensitive selection rules, the exciton ground state is dark. For in-plane polarized light, the magnetic field barely affects the exciton spatial localization, and consequently the exciton oscillator strength for recombination increases only slightly with increasing field. For z polarized light, a sharp increase of the oscillator strength beyond 30 T is found which is attributed to the enhanced s character of the relevant portion of the exciton wave function.  相似文献   

20.
The effect of electric field on the binding energy, interband emission energy and the non-linear optical properties of exciton as a function of dot radius in an InSb/InGaxSb1?x quantum dot are investigated. Numerical calculations are carried out using single band effective mass approximation variationally to compute the exciton binding energy and optical properties are obtained using the compact density matrix approach. The dependence of the nonlinear optical processes on the dot sizes is investigated for various electric field strength. The linear, third order non-linear optical absorption coefficients, susceptibility values and the refractive index changes of electric field induced exciton as a function of photon energy are obtained. It is found that electric field and the geometrical confinement have great influence on the optical properties of dots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号