首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Intense emission from a grid-stabilized plasma cathode based on a glow discharge with an expanded anode area is studied. In the electrode system of the ion source, the potential difference between a large-mesh grid electrode (a hole diameter of 4–6 mm) and cathode and anode plasma reaches 200 V and the glow discharge current is up to 1 A. The current distribution over the electrodes of the plasma cathode is taken, and the dependences of the electron extraction efficiency and electron-emitting-plasma potential on the gas pressure and discharge parameters are obtained. A relationship between the geometric parameters of the grid, cathode plasma potential, and efficiency of electron extraction from the plasma is derived. It is shown that stable intense emission from the plasma cathode can be provided in wide ranges of gas pressure and discharge current by varying the geometry and mesh size of the plasma cathode grid. Discharge contraction in the grid plane at elevated gas pressures is explained. It is assumed that the emitting plasma becomes inhomogeneous due to variation in the thickness of near-electrode layers in the holes of the grid, which makes the distribution of the emission current from the plasma more nonuniform.  相似文献   

2.
The generation of a 250-μs-wide electron beam in a plasma-emitter diode is studied experimentally. A plasma was produced by a pulsed arc discharge in hydrogen. The electron beam is extracted from a circular emission hole 3.8 mm in diameter under open plasma boundary conditions. The beam accelerated in the diode gap enters into a drift space in the absence of an external magnetic field through a hole 4.1 mm in diameter made in the anode. The influence of electron current deposition at the edge of the anode hole on the beam’s maximum attainable current, above which the diode gap breaks down, is studied for different accelerating voltages and diode gaps. The role of processes occurring on the surface of the electrodes is shown. For an accelerating voltage of 32 kV, a mean emission current density of 130 A/cm2 is achieved. The respective mean strength of the electric field in the acceleration gap is 140 kV/cm. Using the POISSON-2 software package, the numerical simulation of the diode performance is carried out and the shape of steady plasma emission boundaries in the cathode and anode holes is calculated. The influence of the density of the ion current from the anode plasma surface on the maximum attainable current of the electron beam is demonstrated.  相似文献   

3.
A model of the unstable stage of a spark discharge in vacuum is proposed, which describes all typical manifestations of this stage, including current spikes in the diode, an increase in the potential at the cathode flame front, collective acceleration of ions in vacuum and plasma diodes, change in the cathode erosion mechanism, and the emergence of electron microbeams with a high current density at the anode. It is shown that these processes are associated with the formation of a charged electron layer of a spatially inhomogeneous plasma at the cathode flame boundary at the unstable stage of the spark discharge in vacuum. The emergence of this layer is associated with a limited emissive ability of the plasma at the cathode flame front during its expansion in vacuum. This leads to disruption of the plasma (field-induced emission of electron from the boundary region of the flame) and the formation of a short-lived charged plasma, viz., high-density ion cluster at the cathode flame boundary. The estimates obtained using this model are in good agreement with the experimental data on physical processes at the unstable stage of a vacuum spark discharge.  相似文献   

4.
This article reports about the ion sheath thickness variation occurring in front of a negatively biased plate immersed in the target plasma region of a double plasma device. The target plasma is produced due to the local ionization of neutral gas by the high energetic electrons coming from the source region (main discharge region). It is observed that for an increase in cathode voltage (filament bias voltage) in the source region, the ion flux into the plate increases. As a result, the sheath at the plate contracts. Again, for an increase in source anode voltage (magnetic cage bias), the ion flux to the plate decreases. As a result, the sheath expands at the plate. The ion sheath formed at the separation grid of the device is found to expand for an increase in cathode voltage and it contracts for an increase in the anode voltage of the main discharge region. One important observation is that the applied anode bias can control the Bohm speed of the ions towards the separation grid. Furthermore, it is observed that the ion current collected by the separation grid is independent of changes in plasma density in the diffusion region but is highly dependent on the source plasma parameters. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Parameters and ion-emission characteristics of the plasma generated in the anode stage of an ion source with a hollow glow-discharge plasma cathode are studied. To decrease the minimum operating gas pressure to 5×103 Pa, a multipole magnetic system was installed on the surface of the hollow cathode and the peripheral magnetic field was enhanced in the anode stage of the source. The effect of the gas pressure, the plasma-cathode current, and the voltage between the electrodes of the anode stage on the value of the ion current extracted from the plasma is investigated. It is found that the size of the exit aperture of the hollow cathode substantially affects the efficiency of ion extraction. The potential (1–5 V) and the electron temperature (1–8 eV) of the anode-stage plasma are measured by the probe method. The conditions are determined that ensure the maximum ion-emission current from the plasma at low gas pressures.  相似文献   

6.
This paper is devoted to an investigation of the directional velocities of the ions generated in cathode spots of vacuum arc discharges. By using emission methods of studying the processes in a vacuum arc discharge, which involve the determination of the parameters and characteristics of the discharge plasma by analyzing the ion current extracted from the plasma and the ion charge states, the velocities of ions have been determined for the majority of cathode materials available in the periodic table. Is has been shown that at a low pressure of the residual gas in the discharge gap the directional velocities of the ions do not depend on the ion charge state. Comparison of the data obtained with calculated values allows the conclusion that the acceleration of ions in a vacuum arc occurs by the magnetohydrodynamic mechanism.  相似文献   

7.
A new scheme of a gas-discharge system is proposed for a basket-type ion source with a plasma cathode in which the electrons are emitted from the expanded anode part of a constricted hollow-cathode glow discharge bounded by a grid electrode. The modified electrode system of the ion source made it possible to enlarge the surface area of the plasma cathode grid and the aperture of its cells, thereby providing stable ion emission from the discharge plasma within a wide gas-pressure range and substantially (by one order of magnitude) increasing the grid lifetime. The operation of the plasma cathode in the free and forced emission modes is examined, and the energy efficiency of ion generation in the gas-discharge system under study is evaluated.  相似文献   

8.
The transition of a low-current discharge with a self-heated hollow cathode to a high-current discharge is studied, and stability conditions for the latter in the pulsed–periodic mode with a current of 0.1–1.0 kA, pulse width of 0.1–1.0 ms, and a pulse repetition rate of 0.1–1.0 kHz are determined. The thermal conditions of the hollow cathode are analyzed, and the conclusion is drawn that the emission current high density is due to pulsed self-heating of the cathode’s surface layer. Conditions for stable emission from a plasma cathode with a grid acting as a plasma boundary using such a discharge are found at low accelerating voltage (100–200 eV) and a gas pressure of 0.1–0.4 Pa. The density of the ion current from a plasma generated by a pulsed beam with a current of 100 A is found to reach 0.1 A/cm2. Probe diagnostics data for the emitting and beam plasmas in the electron source are presented, and a mechanism behind the instability of electron emission from the plasma is suggested on their basis.  相似文献   

9.
大气压氩直流微放电光谱研究   总被引:1,自引:1,他引:0  
微空心阴极放电或微放电是一种能够实现高气压下放电的有效方法。利用不锈钢空心针作阴极,不锈钢网作阳极,进行了大气压氩直流微放电实验研究。测量了大气压氩微放电光谱,发现氩气的发 射谱线主要集中在690~860 nm范围,且全部为氩原子4p—4s的跃迁。实验研究了不同放电电流、气体压强、气体流量与谱线强度之间的关系,发现谱线强度随放电电流、气体流量增加均增加,而谱线强 度随压强变化呈现不同特征:谱线强度随压强的增加先增加后降低,在13.3 kPa时强度最大。此外,选用跃迁波长为763.51和772.42 nm的两条光谱线,利用发射谱线强度比值法测量了氩气微放电等离子 体的电子激发温度。结果显示,其电子激发温度处于2 000~2 800 K之间,且随放电电流的增加而增加,随气体压强和气体流量的增加而降低。  相似文献   

10.
The electrical transparency of the grid and the passing current are determined from probe measurements of the discharge plasma parameters when a plasma switch with a developed cathode is in the steady conductive state. To eliminate discrepancies between the analysis and experiment, it is assumed that the potential (virtual cathode) distribution in a grid mesh is nonmonotonic in the direction of current transfer.  相似文献   

11.
The energy and current balances in the diode unit of a high-current pulsed electron accelerator (350–500 keV, 60 ns, 250 J per pulse) are compared for an explosive emission cathode (made of graphite, copper, or carbon felt) and a multipoint (graphite or copper) cathode. The planar diode with the continuous cathode is shown to be more efficient in terms of conversion of the applied energy to electron energy (more than 90%) despite a delay in the plasma surface formation. With the impedance of the planar diode matched to the output resistance of the nanosecond generator, the efficiency of the diode does not depend on the time of plasma formation on the cathode. In the case of the graphite cathode, the plasma formation delay reduces the fraction of slow electrons in the forming electron beam and reduces electron losses in anode foil when the beam is extracted from the vacuum space of the diode chamber into the reactor.  相似文献   

12.
The properties of the discharge in and radiation from an open gas-filled diode to which high-voltage nanosecond pulses are applied from the RADAN-220 generator are studied. Electromagnetic radiation in the X-ray, UV, visible, and near-IR ranges of the spectrum, as well as high-power subnanosecond (0.5-to 0.7-ns-long) pulses of ultra-wide-band (UWB) electromagnetic radiation, are recorded when a diffuse discharge is initiated in atmospheric pressure air. For the coaxial cathode and anode, the open gas diode emits radially polarized UWB pulses, whereas for the cathode in the form of a segment, the UWB radiation is linearly polarized. The effective potential for both designs of the diode is ER = 6 kV. It is shown that the plasma in the discharge gap serves as a source of soft X rays and the metallic anode generates hard X rays.  相似文献   

13.
Directed ion velocities in a vacuum arc discharge plasma are measured on the basis of a study of the ion emission current response to a rapid change of arc current. It is shown that these velocities are about 106 cm/s, are determined by the cathode material, and are almost independent of the ion charge number. Applying a magnetic field results in an increase in the directed ion velocity. As the gas pressure increases, the directed ion velocity decreases; this is the only case where the directed velocities are observed to depend on the ion charge number.  相似文献   

14.
The emission properties of a plasma cathode based on a nanosecond pulsed glow discharge with currents of up to 200A at a pressure of 5×10−2 Pa are studied experimentally. Stable ignition and burning of the discharge are ensured if the current in the auxiliary pulsed discharge is 25–30% of that in the main discharge and its pulse duration exceeds that of the main discharge by more than an order of magnitude. Emission current pulses from the cathode with amplitudes of up to 140A fully reproduce the discharge current and are determined by the transparency of the grid anode. Zh. Tekh. Fiz. 69, 62–65 (November 1999)  相似文献   

15.
We report on the results of investigation of a plasma switch with complete grid control in a discharge with a cathode spot on the liquid-metal cesium cathode without grid diaphragming. The retention of the working area of the grid relative to the anode area leads to an order-of-magnitude increase in the switching anode current (up to 20 A/cm2 over the anode area) and a substantial (up to 100 V and higher) increase in the switching voltages. The use of the cathode jet makes it possible to reduce the working pressures of cesium vapor (down to 10–3 Torr). We discuss the results of analysis of peculiarities of grid discharge quenching in such a switch, which make it possible to determine possible reasons for limitation of the working parameters of the switch and the ways of their further increase.  相似文献   

16.
The specific ion erosion γi of cathodes made of C, Mg, Al, Ti, Co, Cu, Y, Mo, Cd, Sm, Ta, W, Pt, Pb, and Bi is determined by measuring the total ion current from the vacuum arc plasma. It is demonstrated that the ratio of the total ion current to the discharge current, αi in a vacuum arc varies from 5 to 19%, depending on the cathode material. It is found experimentally that the ion current fraction αi is inversely proportional to the atomic bond energy of the cathode material. It is shown that an increase in the total ion current extracted from the discharge plasma when applying an external magnetic field to the cathode region of the discharge is related solely to the appearance of ions with higher charge numbers in the plasma, while the magnitude of the specific ion erosion γi remains unchanged.  相似文献   

17.
The prebreakdown stage of a gas discharge in a diode with strongly overloaded cathode is studied by laser methods (by simultaneous use of multiframe interferometry and shadow and schlieren photographing) at atmospheric pressure. The spatial resolution of the methods is about 20 μm. A probing pulse of a laser (LS-2151 Nd: YAG laser with a half amplitude duration of 70 ps and a pulse energy of up to 40 mJ) is synchronized with a voltage pulse with accuracy of about 1 ns. High field strength at the cathode is achieved due to the use of thin individual metal tips on the electrodes. It is shown that the initial stage of breakdown of a discharge gap is accompanied by the emergence of a dense plasma cloud at the end of a tip with electron density of about 5 × 1019 cm–3 with a size of tens of microns, as well as by a sharp increase in the total current through the diode. After the emergence of a dense plasma cloud at the end of a cathode tip, a similar cloud is formed on the surface of the anode; sometime later, these clouds join together and form a tubular current channel. The dynamics of the breakdown, as well as the parameters of the plasma are studied by the abovementioned techniques in three independent optical channels.  相似文献   

18.
The basic characteristics of the nonself-sustained arc discharge in a vapor of the anode material are studied. The influence of thermoemission parameters of the cathode on volt-ampere characteristics of the discharge is described. It is established that in a free mode of the discharge cathode operation, when the discharge current ID is lower than the current of the thermoelectron emission from the discharge cathode IC, the deposition rate of the films q is directly proportional to the discharge current ID. In the compelled mode of the cathode operation, when ID>I C, q~WD2, where WD=ID UD with UD being the discharge voltage. It is shown that the magnetic field increases the plasma density and changes the density profile from n(x)-1/x2 to n(x)-1/x with x being a distance along the flow. The motion of created plasma flow is shown to have a noncollisional character with constant electron temperature of 5-7 eV along the flow. The values of plasma potential and electric field in the flow are determined; the values of cathodic and anodic potential drops in the discharge are evaluated. The angular distributions of ion and neutral fluxes in the created plasma flow are described. It is shown that the plasma flows parameters depend substantially on the working material. With use of crossed electric and magnetic fields, the flow ionization coefficient was enhanced up to 85% for the discharge in Ti vapors, and 35% for the discharge in Cu vapors  相似文献   

19.
The possibility of using a plasma electron source (PES) with a discharge in crossed E × H field for compensating the ion beam from an end-Hall ion source (EHIS) is analyzed. The PES used as a neutralizer is mounted in the immediate vicinity of the EHIS ion generation and acceleration region at 90° to the source axis. The behavior of the discharge and emission parameters of the EHIS is determined for operation with a filament neutralizer and a plasma electron source. It is found that the maximal discharge current from the ion source attains a value of 3.8 A for operation with a PES and 4 A for operation with a filament compensator. It is established that the maximal discharge current for the ion source strongly depends on the working gas flow rate for low flow rates (up to 10 ml/min) in the EHIS; for higher flow rates, the maximum discharge current in the EHIS depends only on the emissivity of the PES. Analysis of the emission parameters of EHISs with filament and plasma neutralizers shows that the ion beam current and the ion current density distribution profile are independent of the type of the electron source and the ion current density can be as high as 0.2 mA/cm2 at a distance of 25 cm from the EHIS anode. The balance of currents in the ion source-electron source system is considered on the basis of analysis of operation of EHISs with various sources of electrons. It is concluded that the neutralization current required for operation of an ion source in the discharge compensation mode must be equal to or larger than the discharge current of the ion source. The use of PES for compensating the ion beam from an end-Hall ion source proved to be effective in processes of ion-assisted deposition of thin films using reactive gases like O2 or N2. The application of the PES technique makes it possible to increase the lifetime of the ion-assisted deposition system by an order of magnitude (the lifetime with a Ti cathode is at least 60 h and is limited by the replacement life of the deposited cathode insertion).  相似文献   

20.
The possibility of using a plasma electron source (PES) with a discharge in crossed E × H field for compensating the ion beam from an end-Hall ion source (EHIS) is analyzed. The PES used as a neutralizer is mounted in the immediate vicinity of the EHIS ion generation and acceleration region at 90° to the source axis. The behavior of the discharge and emission parameters of the EHIS is determined for operation with a filament neutralizer and a plasma electron source. It is found that the maximal discharge current from the ion source attains a value of 3.8 A for operation with a PES and 4 A for operation with a filament compensator. It is established that the maximal discharge current for the ion source strongly depends on the working gas flow rate for low flow rates (up to 10 ml/min) in the EHIS; for higher flow rates, the maximum discharge current in the EHIS depends only on the emissivity of the PES. Analysis of the emission parameters of EHISs with filament and plasma neutralizers shows that the ion beam current and the ion current density distribution profile are independent of the type of the electron source and the ion current density can be as high as 0.2 mA/cm2 at a distance of 25 cm from the EHIS anode. The balance of currents in the ion source-electron source system is considered on the basis of analysis of operation of EHISs with various sources of electrons. It is concluded that the neutralization current required for operation of an ion source in the discharge compensation mode must be equal to or larger than the discharge current of the ion source. The use of PES for compensating the ion beam from an end-Hall ion source proved to be effective in processes of ion-assisted deposition of thin films using reactive gases like O2 or N2. The application of the PES technique makes it possible to increase the lifetime of the ion-assisted deposition system by an order of magnitude (the lifetime with a Ti cathode is at least 60 h and is limited by the replacement life of the deposited cathode insertion).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号