首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The ecton model of the cathode spot is used to analyze the main parameters of ion flow in vacuum arcs (ion erosion, mean charge, and velocity). It is shown that the arc plasma is formed as a result of microexplosions at the cathode surface, induced by the Joule heating by the high-density current of explosive electron emission. Ionization processes are localized in a narrow region of the order of a micrometer near the cathode and the ionization composition of the plasma subsequently remains unchanged. Under the action of the electron pressure gradient, ions acquire directional velocities of the order of 106 cm/s even over small distances of the order of several micrometers.  相似文献   

2.
Based on time of flight method, influence of short time vacuum arc current jump on arc plasma parameters were investigated. Superposition of the current pulse of a vacuum arc with a high operating voltage results in the appearance of ions of higher charge state in the discharge plasma and in an increase in the mean ion charge state for most of the cathode materials used in the experiment. The method of a “short-time current jump” can be also used to investigate the parameters of a vacuum arc, in particular to estimate the ion direct velocities in vacuum arc plasmas. Our estimates show that in the presence of a current step the ion velocities are almost identical for all differently charged ions and depend only on the peak current and the ion mass  相似文献   

3.
This paper is devoted to an investigation of the directional velocities of the ions generated in cathode spots of vacuum arc discharges. By using emission methods of studying the processes in a vacuum arc discharge, which involve the determination of the parameters and characteristics of the discharge plasma by analyzing the ion current extracted from the plasma and the ion charge states, the velocities of ions have been determined for the majority of cathode materials available in the periodic table. Is has been shown that at a low pressure of the residual gas in the discharge gap the directional velocities of the ions do not depend on the ion charge state. Comparison of the data obtained with calculated values allows the conclusion that the acceleration of ions in a vacuum arc occurs by the magnetohydrodynamic mechanism.  相似文献   

4.
Ranges of ions from He to Ne in gaseous (hydrogen and argon), liquid (water), and solid (carbon) media are analyzed. This analysis demonstrates the different dependences of ranges on the velocities, the charges, and the masses of ions in different velocity region. In the case of small ion velocities, the ranges are directly proportional to their velocities and masses and are inversely proportional to the nuclear charge. In the intermediate velocity region corresponding to an ion energy of Е = 0.1–1 MeV/nucleon, in which processes of ion charge exchange play an important role and the average ion charge differs from the nuclear charge, the ranges become proportional to the squared ion velocities and masses and are inversely proportional to the nuclear charge. To establish the relation between the ion ranges in the regions of small and average velocities, it is convenient to use the universal function f(Z, M) = RZ/M, successfully describing the reduced ranges of ions with given velocities in gaseous, liquid, and solid media. In the case of large velocities where ions upon passing through the media lose all electrons, the ranges are directly proportional to the squared ion energies and masses and are inversely proportional to the squared nuclear charge.  相似文献   

5.
Based on experimental data on the ion charge distributions, the cross sections of single electron loss σ i, i + 1 and single electron capture σ i, i ? 1 by carbon ions with velocities (2.7–8) × 108 cm/s in different gaseous media (He, N2, and Ar) have been obtained. Regularities of the cross section variation of the electron capture and loss by carbon ions as a function of the ion velocity, ion charge, and atomic number of the target have been for the first time studied in a wide range of the initial ion charge, from i = 0 to i = 6. A qualitative agreement of the obtained results with the published data has been established for a number of other ions. Theoretical calculations of the cross sections of single electron loss by carbon ions in helium have been carried out.  相似文献   

6.
含氢电极脉冲放电等离子体特性诊断   总被引:1,自引:1,他引:0       下载免费PDF全文
利用飞行时间质谱法诊断了含氢电极脉冲真空弧离子源放电等离子体成分、离子电荷状态及离子扩散速度等特性.实验结果表明,含氢电极脉冲真空弧离子源放电等离子体的离子成分主要由H+,Ti+,Ti2+和Ti3+组成,其中Ti2+占主要部分.当放电电流为40~80 A时,Ti离子的平均电荷数在1.95~2.13之间,随着放电电流的增...  相似文献   

7.
The plasma flow velocity in the Plasma Generator PSI‐2 has been investigated by using of Mach probe. PSI‐2 is a stationary high‐current arc discharge in which the quasi‐neutral plasma expands along the magnetic field lines. The low‐temperature (Te < 20 eV), medium density (ne ∼ 1018— 1019 m—3 ) plasma in the discharge is similar to the plasma in the divertor region of tokamaks. From the ratio of ion saturation currents collected from opposite sides of the probe the flow velocities (Mach numbers) in argon and hydrogen discharges are obtained.  相似文献   

8.
A method is proposed for calculating the charge fractions, mean charges, and dispersion of the charge distribution in ion beams passing through thin organic films under nonequilibrium conditions. Calculations are performed for N ions travelling at different velocities (from 8 × 108 to 12 × 108 cm/s) in celluloid. The energy loss is estimated depending on the initial charge states and velocities of the incident ions.  相似文献   

9.
The forces acting on the cathode arc spot surface and removing the molten layer from the crater bottom are composed mainly of the ion pressure, the neutral gas pressure and the evaporation recoil whilst electrostatic forces diminish the effective pressure that is in the order of some 109 dyn/cm2. The motion of the liquid layer caused by these forces is treated with the hydrodynamic equations. A simple solution exists in the special case of constant layer depth, that is achieved a few nanoseconds after spot formation. From this model the layer depths (some 0.1 μm) and the ejection velocities at the crater rims (few 104 cm/s) are calculated. The real spot velocity agrees with the velocity of the melting front below the spot surface, but because of the stochastic character of the spot motion the apparent velocity decreases with growing observation time intervals Δt according to Δt?1/2.  相似文献   

10.
Vacuum gaps with copper and silver needle cathodes were fired by a 13 μs duration half-cycle sinusoidal arc, and charge states of the ions were analyzed using the time of flight (TOF) method at different positions in the direction perpendicular to the electrode axis. Velocities of each charge state ion were determined assuming a collisionless flight from the cathode region to the outside of the gap. The velocities of the fastest ions of copper and silver are 2.1 and 1.6×104 m/s, respectively, regardless of the charge state. The velocities of the ions released with the arc extinction are lower, and differ depending on the state of the charge  相似文献   

11.
鲁彦霞  路兴强  宋想  张泊丽 《中国物理 B》2011,20(3):33402-033402
Electron-loss cross sections of O q+(q = 1 4) colliding with He,Ne and Ar atoms are measured in the intermediate velocity regime.The ratios of the cross sections of two-electron loss to that of one-electron loss R 21 are presented.It is shown that single-channel analysis is not sufficient to explain the results,but that projectile electron loss,electron capture by the projectile and target ionization must be considered together to interpret the experimental data.The screening and antiscreening effects can account for the threshold velocity results,but cannot explain the dependence of the ratio R 21 on velocity quantitatively.In general,the effective charge of the target atom increases with velocity increasing because the high-speed projectile ion can penetrate into the inner electronic shell of target atom.Ne and Ar atoms have similar effective charges in this velocity regime,but He atoms have smaller ones at the same velocities due to its smaller nuclear charge.  相似文献   

12.
A non-continuous electroosmotic flow model (PFP model) is built based on Poisson equation, Fokker-Planck equation and Navier-Stokse equation, and used to predict the DNA molecule translocation through nanopore. PFP model discards the continuum assumption of ion translocation and considers ions as discrete particles. In addition, this model includes the contributions of Coulomb electrostatic potential between ions, Brownian motion of ions and viscous friction to ion transportation. No ionic diffusion coefficient and other phenomenological parameters are needed in the PFP model. It is worth noting that the PFP model can describe non-equilibrium electroosmotic transportation of ions in a channel of a size comparable with the mean free path of ion. A modified clustering method is proposed for the numerical solution of PFP model, and ion current translocation through nanopore with a radius of 1 nm is simulated using the modified clustering method. The external electric field, wall charge density of nanopore, surface charge density of DNA, as well as ion average number density, influence the electroosmotic velocity profile of electrolyte solution, the velocity of DNA translocation through nanopore and ion current blockade. Results show that the ion average number density of electrolyte and surface charge density of nanopore have a significant effect on the translocation velocity of DNA and the ion current blockade. The translocation velocity of DNA is proportional to the surface charge density of nanopore, and is inversely proportional to ion average number density of electrolyte solution. Thus, the translocation velocity of DNAs can be controlled to improve the accuracy of sequencing by adjusting the external electric field, ion average number density of electrolyte and surface charge density of nanopore. Ion current decreases when the ion average number density is larger than the critical value and increases when the ion average number density is lower than the critical value. Our numerical simulation shows that the translocation velocity of DNA given by the PFP model agrees with the experimental, results better than that given by PNP model or PB model.  相似文献   

13.
This paper reviews the properties of the cathode ion flux generated in the vacuum arc. The structure and distribution of mass erosion from individual cathode spots and the characteristics of current carriers from the cathode region at moderate arc currents are described. An appreciable ion flux (~10% of total arc current) is emitted from the cathode of a vacuum arc. This ion flux is strongly peaked in the direction of the anode, though some ion flux may be seen even at angles below the plane of the cathode surface. The observed spatial distribution of the ion flux is expressed quite well as an exponential function of solid angle. The ion flux is quite energetic, with average ion potentials much larger than the arc voltage, and generally contains a considerable fraction of multiply-charged ions. The average ion potential and ion multiplicity increase significantly for cathode materials with higher arc voltages, but decrease with increasing arc current for a particular material. The main theories concerning ion acceleration in cathode spots are the potential hump theory (PH), which assumes that all ions are created at the same potential, and the gas dynamic theory (GD), which assumes that all ions are created with the same flow velocity. Experimental data on the potentials and energies of individual ions indicates that these theories in their original forms are not quite correct, however extensions or modifications of the PH and GD theories seem very likely to be able to predict correct values for the charge states, potentials, and energies of individual ions.  相似文献   

14.
A gold target has been irradiated with a Q-switched Nd:Yag laser having 1064?nm wavelength, 9?ns pulse width, 900?mJ maximum pulse energy and a maximum power density of the order of 1010?W/cm2. The laser–target interaction produces a strong gold etching with production of a plasma in front of the target. The plasma contains neutrals and ions having a high charge state. Time-of-flight (TOF) measurements are presented for the analysis of the ion production and ion velocity. A cylindrical electrostatic deflection ion analyzer permits measurement of the yield of the emitted ions, their charge state and their ion energy distribution. Measurements indicate that the ion charge state reaches 6+ and 10+ at a laser fluence of 100?J/cm2 and 160?J/cm2, respectively. The maximum ion energy reaches about 2?keV and 8?keV at these low and high laser fluences, respectively. Experimental ion energy distributions are given as a function of the ion charge state. Obtained results indicate that electrical fields, produced in the plume, along the normal to the plane of the target surface, exist in the unstable plasma. The electrical fields induce ion acceleration away from the target with a final velocity dependent on the ion charge state. The ion velocity distributions follow a “shifted Maxwellian distribution”, which the authors have corrected for the Coulomb interactions occurring inside the plasma.  相似文献   

15.
The electrodynamics that predicts all known relevant observations is based upon the force F=(qq ′R/R3) [1 − 2v·v′/c2 + 3(v·R) (v′·R)/c2R2 + (a — a′)·R/c2] on charge q at r with the absolute velocity v and acceleration a due to charge q′ at r′ with absolute velocity v′ and acceleration a′, where R=r − r′. This force yields Ampere’s original empirical law for the force between current elements, which predicts the many effects due to Ampere tension between colinear current elements. It yields Faraday induction as well as Müller’s localized unipolar induction. The force on an accelerating charge due to a stationary charge yields Lenz’s law for the induced back emf; and, when applied to gravitation, qq′ being replaced by — Gmm′, it yields the inertial force ma, confirming Mach’s priniciple. For charge velocities approaching the velocity of light c it predicts the results of the Kaufmann-Bucherer experiments and the Bertozzi experiment, assuming neomechanics, or mass change with velocity. It is readily written as a field theory. Introducing time retardation, it yields waves and radiation. It predicts the observed zero self-torque on the Pappas-Vaughan Z-shaped antenna. Energy is conserved. The Weber electrodynamic theory is shown to fail.  相似文献   

16.
To optimize thrust performance, the expression of space-charge-limited current for vacuum arc thruster is derived from Poisson's equation. The commonly used ring-type and coaxial-type vacuum arc thrusters are simplified to the equivalent current sheet in planar geometry and cylindrical capacitor, respectively, for this calculation. Both the spatial distribution and peak magnitude of space-charge-limited current are given explicitly, together with their dependences on gap distance, applied voltage, charge number, and ion mass. For typical experimental parameters of the vacuum arc thruster, it is shown that the maximum current density drops significantly when the gap distance becomes large and grows when the applied voltage increases; moreover, a cathode material of lower atomic weight yields a higher current density. The expressions of total current for these two types of vacuum arc thruster are also presented. This work, to our best knowledge, is the first application of space-charge-limited current to the vacuum arc thruster and practically very interesting for engineering design.  相似文献   

17.
An experimental confirmation was obtained of the anode potential fall effect in pulsed broad-beam ion and plasma sources utilizing the evaporation of metal by a vacuum arc. An increase in the overall voltage across the arc discharge was discovered. The investigations demonstrated that the magnitude of the positive anode fall depends on the structural features of the ion source and are determined by the ratio of the plasma flux directed onto the lateral surface of the anode to the total plasma flux from the cathode spot. It was established that the anode fall effect is controlled and makes it possible to influence the homogeneity of the ion current distribution over the beam cross section, the efficiency of extracting ions from the plasma, and the charge composition of the ion flux.Scientific-Research Institute of Nuclear Physics, Polytechnic University, Tomsk. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 82–92, February, 1994.  相似文献   

18.
Influence of cathode materials (Ti, Al, Cu, TiN), ambient gases (Ar, N2, p = 0.1-1 Pa) and the arc current itself on the motion and the velocity of cathode spots in an arc coating process have been investigated with the help of a new high speed framing camera. It was found, that the cathode material causes different spot currents but in general the spot arrangement and the motion on the surface are similar. Surface contaminations due to ambient gases affect this dynamics in several ways. Insulating layers like AIN can drastically increase the instantaneous spot velocity, for example from <5 m/s on Al up to 170 m/s on AIN contaminated areas. TiN layers with a high conductivity increase the spot mobility at first. But at nearly completely contaminated surfaces (simulated by a TiN cathode), the mobility is strongly decreased. The values change from an average velocity of 6.3 m/s with a diffusion constant of 54 cm2/s (Ti, 0.01 Pa) to 2 m/s and 6.4 cm2/s at TiN. The course of the instantaneous spot velocity during the spot splitting phase was investigated too. The instantaneous spot velocity of each of the two new spots originated from the starting spot is relatively high (30–40 m/s) within the first 50 μs. The cathode material and the ambient gases are of slight influence in this phase. The movement is directed. In the further development the instantaneous spot velocity is decreasing to values under 5–10 m/s. The motion is now more and more random. Additionally it could be proved, that the lower stability limit for a stable discharge is strongly connected with the spot current, which depends on discharge conditions.  相似文献   

19.
In an experimental study, the multi-ionisation of metallic clusters (Nan) has been analysed in collisions with light ions in low charge states (H+, He+, He2+, O3+) at collision velocities below 1 a.u. Cluster ions are produced in charge states up to 5+. The average charge of the nano-particles is found to increase linearly with the variation of projectile velocity and the square of the effective projectile charge, well in agreement with the electronic stopping power of the bulk material. A fraction of 50% to 30% of the total projectile energy loss (decreasing with velocity) is transferred into vibrational modes in good agreement with recent theoretical predictions. Received 8 November 2000 and Received in final form 26 January 2001  相似文献   

20.
A study is made of the effects related to the formation of electrode jets in discharges in hydrogen and air at a current of 105–106 A, a current growth rate of 1010 A/s, an initial pressure of 0.1–4.0 MPa, and a discharge gap length of 5–40 mm. After secondary breakdown, jets are observed in a semitransparent discharge channel expanding with a velocity of (4–7)×102 m/s. The formation of shock waves in the interaction of the jets with the ambient gas and the opposite electrode is observed by the shadowgraphy method. Seventy microseconds after the beginning of the discharge, the pressure of the metal vapor plasma near the end of the tungsten cathode amounts to 177 MPa. The brightness temperature in this case is T=59×103 K, the average ion charge number is [`(m)] = 3.1\overline m = 3.1 , and the metal vapor density is n=5.3×1019 cm−3. After 90 μs, the average ion charge number and the metal vapor density near the anode end are [`(m)] = 2.6\overline m = 2.6 and n=7.4×1019 cm−3, respectively. Based on the experimental data, possible reasons for the abnormally high values of the total voltage drop near the electrodes (up to ∼1 kV) are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号