首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the transfer matrix method, the transmission probability, the spin polarization and the electron conductance of a ballistic electron are studied in detail in a nanostructure. We observe that these quantities sensitively depend on the number of periodic magnetic-electric barriers. As the number of periods increases, the resonance splitting increases, the number of the resonance peaks increases and the peaks become sharper as well as the spin polarization being enhanced. Surprisingly, a polarization of nearly 100% can be achieved by spin-dependent resonant tunneling in this structure, although the average magnetic field of the structure is zero.  相似文献   

2.
By use of the scattering matrix method, we investigate the coupling effects of layers on spin-polarized transport through semimagnetic semiconductor heterostructures with triple paramagnetic layers. Due to the coupling between double non-magnetic layers or among triple paramagnetic layers, spin tunneling exhibits interesting and complex features, which are determined by the structural configuration, the external fields as well as the spin orientations. It is shown that for electrons with either spin orientation tunneling through the symmetric or asymmetric heterostructures with triple paramagnetic layers, transmission resonances can approach the optimum under several biases. Moreover, for asymmetric structures, the resonant enhancement can occur under both several positive and negative biases. The spin-dependent resonant enhancement is also clearly reflected in the current density. In addition, for spin electrons traversing the multilayer heterostructure, the resonant splitting occurs in the transmission, which shows rich variations with the bias. These interesting results may be helpful to the development of spintronic devices. Received 28 April 2001  相似文献   

3.
A barrier with a tunable spin-valley dependent energy gap in silicene could be used as a spin and valley filter. Meanwhile, special resonant modes in unique quantum structure can act as energy filters. Hence we investigate valley and spin transport properties in the potential silicene quantum structures, i.e., single ferromagnetic barrier, single electromagnetic barrier and double electric barriers. Our quantum transport calculation indicates that quantum devices of high accuracy and efficiency (100% polarization), based on modulated silicene quantum structures, can be designed for valley, spin and energy filtering. These intriguing features are revealed by the spin, valley dependent line-type resonant peaks. In addition, line-type peaks in different structure depend on spin and valley diversely. The filter we proposed is controllable by electric gating.  相似文献   

4.
A minority-spin resonant state at the Fe/GaAs(001) interface is predicted to reverse the spin polarization with the voltage bias of electrons transmitted across this interface. Using a Green's function approach within the local spin-density approximation, we calculate the spin-dependent current in a Fe/GaAs/Cu tunnel junction as a function of the applied bias voltage. We find a change in sign of the spin polarization of tunneling electrons with bias voltage due to the interface minority-spin resonance. This result explains recent experimental data on spin injection in Fe/GaAs contacts and on tunneling magnetoresistance in Fe/GaAs/Fe magnetic tunnel junctions.  相似文献   

5.
The resonant behaviors of spin-dependent linear AR conductance, the spin-dependent AR current, the electron occupation number and spin accumulation in the QD are theoretically investigated in the FM/QD/SC system with intradot spin-flip scattering. The novel resonant behaviors of spin-dependent AR conductance versus Fermi energy are revealed, which are rather different from the AR conductance versus the dot's energy level case [Cao et al., Phys. Rev. B 70 (2004) 235341]. It is proved that the split of the resonant peak can be induced by the competition between the coupling strengths to the FM and SC leads, the intradot spin-flip scattering, and the gate voltage. The number, the widths, and the distance of the peaks could be controlled by tuning the relevant parameters. The resonance of AR current can take place only when the energy level of QD lines up with the right lead chemical potential and blows the left lead chemical potential. The magnitude of the resonant AR current depends on the number of resonant levels involved in the Andreev tunneling process. It is also proved that the spin-flip scattering can suppress the spin accumulation effectively, and induce the spin polarization of AR conductance and AR current simultaneously. The results make us understand better the fundamental in this system, and are useful for the design of spintronic devices.  相似文献   

6.
Resonant transmission and Goos–Hänchen (GH) shift for Dirac fermion beams tunneling through graphene double velocity barrier structures (DVBs) are investigated theoretically. Analytical and numerical results demonstrate that strong resonant tunneling effect occurs in this structure and is highly dependent on the incident angle and the structure of velocity barriers. The resonant tunneling in graphene DVBs belongs to the Fabry–Pérot resonance and leads to oscillated conduction at wide energy range. It is also found that GH shifts in this structure can be enhanced by the resonant tunneling and multi-GH shift peaks with giant magnitudes can occur at these resonant energy positions. These special properties of GH shifts in graphene DVBs may have good application in lateral manipulation of electron beams and valley or spin beam splitter.  相似文献   

7.
By means of a diagram technique for Hubbard operators, we show the existence of a spin-dependent renormalization of the localized levels in an interacting region, e.g., quantum dot, modeled by the Anderson Hamiltonian with two conduction bands. It is shown that the renormalization of the levels with a given spin direction is due to kinematic interactions with the conduction subbands of the opposite spin. The consequence of this dressing of the localized levels is a drastically decreased tunneling current for ferromagnetically ordered leads compared to that of paramagnetically ordered leads. Furthermore, the studied system shows a spin-dependent resonant tunneling behavior for ferromagnetically ordered leads.  相似文献   

8.
王瑞琴  宫箭  武建英  陈军 《物理学报》2013,62(8):87303-087303
电子的隧穿时间是描述量子器件动态工作范围的重要指标. 本文考虑k3 Dresselhaus 自旋轨道耦合效应对系统哈密顿量的修正, 结合转移矩阵方法和龙格-库塔法来解含时薛定谔方程, 进而讨论了电子在非磁半导体对称双势垒结构中的透射系数及隧穿寿命等问题. 研究结果发现:由于k3 Dresselhaus 自旋轨道耦合效应使自旋简并消除, 并在时间域内得到了表达, 导致自旋向上和自旋向下电子的透射峰发生了自旋劈裂; 不同自旋取向的电子构建时间和隧穿寿命不同, 这是导致自旋极化的原因之一; 电子的自旋极化在时间上趋于稳定. 关键词: 自旋极化输运 透射系数 隧穿寿命 自旋极化率  相似文献   

9.
The spin-dependent electron transport is numerically studied in a nonmagnetic nanostructure in the presence of both Dresselhaus and Rashba spin-orbit interactions. It is shown that the large spin polarization can be achieved in such a structure mainly due to the Rashba spin-orbit term induced splitting of the resonant level. It is also shown that the spin polarization strongly depends on the well width and the thickness of the middle barrier as well as the height of the middle barrier.  相似文献   

10.
We study the spin-dependent tunneling time, including group delay and dwell time, in a graphene based asymmetrical barrier with Rashba spin–orbit interaction in the presence of strain, sandwiched between two normal leads. We find that the spin-dependent tunneling time can be efficiently tuned by the barrier width, and the bias voltage. Moreover, for the zigzag direction strain although the oscillation period of the dwell time does not change, the oscillation amplitude increases by increasing the incident electron angle. It is found that for the armchair direction strain unlike the zigzag direction the group delay time at the normal incidence depends on the spin state of electrons and Hartman effect can be observed. In addition, for the armchair direction strain the spin polarization increases with increasing the RSOI strength and the bias voltage. The magnitude and sign of spin polarization can be manipulated by strain. In particular, by applying an external electric field the efficiency of the spin polarization is improved significantly in strained graphene, and a fully spin-polarized current is generated.  相似文献   

11.
万婷  罗朝明  闵力  陈敏  肖磊 《物理学报》2018,67(6):64201-064201
基于平面角谱理论,系统研究了BK7玻璃-合金薄膜-空气结构中合金介电常数的变化对反射光自旋霍尔效应的调控规律.数值仿真结果表明,该结构发生表面等离激元共振的共振角主要受合金介电常数实部的影响,随介电常数实部的增加而增大,而虚部对共振角变化的影响相对较小.不同介电常数合金在其共振角处得到的较大光子自旋霍尔效应横移呈集中的带状分布,选取介电常数-2.8+1.6i的Ag-Ni合金时,光子自旋霍尔效应横移能达到1.2×10~5 nm.研究还发现将入射角固定为44.1°时,光子自旋霍尔效应横移随合金介电常数的变化呈轴对称分布,并以最大值为中心呈球面状辐射,离中心点越远光子自旋霍尔效应横移越小.选取介电常数-10.6+1.2i的Ag-Au合金时,光子自旋霍尔效应横移最大能达到8000 nm,相比于以往纯金属纳米结构BK7玻璃-金-空气中得到的最大光子自旋霍尔效应横移3000 nm有了较大的提高.该研究不仅能够有效增强光子自旋霍尔效应,还能为设计等离激元共振传感器等纳米光子器件提供理论依据.  相似文献   

12.
Based on the transfer-matrix method, we theoretically investigate the spin-dependent transport properties in magnetic silicene superlattice in the presence of extrinsic Rashba spin–orbit interaction (RSOI). It is found that the spin transmission probability and spin conductivities can be efficiently controlled by the number of magnetic barriers. As the number of magnetic barriers increases, spin conductivities strongly decrease, and reduce to zero in the large on-site potential difference between A and B sublattices (Δz) region. The results indicate that a magnetic silicene superlattice exhibits a remarkable wavevector-dependent spin filtering effect. Also, the magnetoresistance (MR) ratio exhibits an oscillatory behavior with the Fermi energy. The MR ratio can be tuned by the Fermi energy, number of magnetic barriers and extrinsic RSOI. Specifically, in the presence of magnetic field the spin polarization can be observed, and increases by increasing the magnetic field.  相似文献   

13.
We investigate spin-dependent electron transport through graphene-based Rash ba-strain double junctions. It is found that when electrons are injected from left normal graphene region, high spin polarization oscillation is achieved due to the wave-vector-dependent resonant tunneling. The spin polarization is negligible once the incident direction is reversed. Such a remarkable difference arises from pseudogap caused by the Rashba spin-orbit interaction.  相似文献   

14.
Silicene takes precedence over graphene due to its buckling type structure and strong spin orbit coupling. Motivated by these properties, we study the silicene bilayer in the presence of applied perpendicular electric field and intrinsic spin orbit coupling to probe as quantum spin/valley Hall effect. Using analytical approach, we calculate the spin Chern-number of bilayer silicene and then compare it with monolayer silicene. We reveal that bilayer silicene hosts double spin Chern-number as compared to single layer silicene and therefore accordingly has twice as many edge states in contrast to single layer silicene. In addition, we investigate the combined effect of intrinsic spin orbit coupling and the external electric field, we find that bilayer silicene, likewise single layer silicene, goes through a phase transitions from a quantum spin Hall state to a quantum valley Hall state when the strength of the applied electric field exceeds the intrinsic spin orbit coupling strength. We believe that the results and outcomes obtained for bilayer silicene are experimentally more accessible as compared to bilayer graphene, because of strong SO coupling in bilayer silicene.  相似文献   

15.
Quantum-well (QW) states in nonmagnetic metal films between magnetic layers are known to be important in spin-dependent transport, but QW states in magnetic films remains elusive. Here we identify the conditions for resonant tunneling through QW states in magnetic films and report first principles calculations of Fe/MgO/FeO/Fe/Cr and Co/MgO/Fe/Cr. We show that, at resonance, the current increases by 1 to 2 orders of magnitude. The tunneling magnetoresistance ratio is much larger than in simple spin tunnel junctions and is positive (negative) for majority- (minority-) spin resonances, with a large asymmetry between positive and negative biases. The results can serve as a basis for novel spintronic devices.  相似文献   

16.
We show that spin-dependent resonant tunneling can dramatically enhance tunneling magnetoresistance. We consider double-barrier structures comprising a semiconductor quantum well between two insulating barriers and two ferromagnetic electrodes. By tuning the width of the quantum well, the lowest resonant level can be moved into the energy interval where the density of states for minority spins is zero. This leads to a great enhancement of the magnetoresistance, which exhibits a strong maximum as a function of the quantum well width. We demonstrate that magnetoresistance exceeding 800% is achievable in GaMnAs/AlAs/GaAs/AlAs/GaMnAs double-barrier structures.  相似文献   

17.
We report exact model calculations of the spin-dependent tunneling in double magnetic tunnel junctions in the presence of impurities in the well. We show that the impurity can tune selectively the spin channels giving rise to a wide variety of interesting and novel transport phenomena. The tunneling magnetoresistance, the spin polarization, and the local current can be dramatically enhanced or suppressed by impurities. The underlying mechanism is the impurity-induced shift of the quantum well states (QWSs), which depends on the impurity potential, impurity position, and the symmetry of the QWS.  相似文献   

18.
Spin-dependent electron temperature effect on the spin pump in a single quantum dot connected to Normal and/or Ferromagnetic leads are investigated with the help of master equation method. Results show that spin heat accumulation breaks the tunneling rates balance at the thermal equilibrium state thus the charge current and the spin current are affected to some extent. Pure spin current can be obtained by adjusting pumping intensity or chemical potential of the lead. Spin heat accumulation of certain material can be detected by measuring the charge current strength in symmetric leads architectures. In practical devices, spin-dependent electron temperature effect is quite significant and our results should be useful in quantum information processing and spin Caloritronics.  相似文献   

19.
We investigated spin-dependent tunneling conductance properties in fully epitaxial double MgO barrier magnetic tunnel junctions with layered nanoscale Fe islands as a middle layer. Clear oscillations of the tunneling conductance were observed as a function of the bias voltage. The oscillation, which depends on the middle layer thickness and the magnetization configuration, is interpreted by the modulation of tunneling conductance due to the spin-polarized quantum well states created in the middle Fe layer. This first observation of the quantum size effect in the fully epitaxial double barrier magnetic tunnel junction indicates great potential for the development of the spin-dependent resonant tunneling effect in coherent tunneling regime.  相似文献   

20.
在低维材料体系中寻找半金属,对实现纳米自旋电子器件具有重要的研究意义.基于第一性原理密度泛函理论计算方法,研究了AB堆栈的双层硅烯结构及其自旋极化的电子结构间的映射关系,发现其导带底和价带顶都具有负的变形势.基于此,我们预测硅烯双层在弯曲应力作用下,原本简并的空间自旋分布对称性打破,其自旋简并的电子态会出现自旋劈裂,因此双层硅烯纳米管会出现我们预期的半金属性.计算结果表明,AB堆栈结构的硅烯双层纳米管(55, 0)出现了半金属态,并且具有较好的磁稳定性.该结果对低维材料体系实现半金属性提供理论借鉴.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号