首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Thin films of La0.6Ca0.4CoO3 were grown by pulsed laser ablation with nanosecond and femtosecond pulses. The films deposited with femtosecond pulses (248 nm, 500 fs pulse duration) exhibit a higher surface roughness and deficiency in the cobalt content compared to the films deposited with nanosecond pulses (248 nm, 20 ns pulse duration). The origin of these pronounced differences between the films grown by ns and fs ablation has been studied in detail by time-resolved optical emission spectroscopy and imaging. The plumes generated by nanosecond and femtosecond ablation were analyzed in vacuum and in a background pressure of 60 Pa of oxygen. The ns-induced plume in vacuum exhibits a spherical shape, while for femtosecond ablation the plume is more elongated along the expansion direction, but with similar velocities for ns and fs laser ablation. In the case of ablation in the background gas similar velocities of the plume species are observed for fs and ns laser ablation. The different film compositions are therefore not related to different kinetic energies and different distributions of various species in the plasma plume which has been identified as the origin of the deficiency of species for other materials.  相似文献   

2.
Mg-based films have been prepared by pulsed laser deposition technique for photocathode applications. We have investigated the influence of pulse laser duration on morphology and photoemissive properties. Two laser sources have been used, generating pulses of 30 ns at 308 nm (XeCl excimer laser), 5 ps and 500 fs at 248 nm (KrF excimer laser) to grow Mg films onto Si and Cu substrates in high vacuum (∼10−7 Pa) and at room temperature. Morphological investigations carried out by scanning electron microscopy (SEM) have revealed that, in our experimental conditions, the number and the mean size of the droplets on the films surfaces decreases as the pulse laser duration shortens. The contamination level of Mg film surfaces have been studied by energy dispersive X-ray spectroscopy (EDX). The photoelectron performances in terms of quantum efficiency (QE) and emission stability have been tested in a UHV DC photodiode cell (10−7 Pa). Measures of the QE of the samples surfaces have revealed a decrease on the initial value for Mg-based photocathodes prepared by fs laser (from 7.8 × 10−4 to 6.6 × 10−4) PLD with respect to ps (from 6.2 × 10−4 to 7.4 × 10−4) and ns lasers (from 5.0 × 10−4 to 1.6 × 10−3). A comparison among Mg-based photocathodes prepared by ns, ps and fs PLD for the production of high brightness electron beams has been presented and discussed.  相似文献   

3.
A novel technique based on the excimer laser induced crystallization and modification of TiO2 thin films is being reported. W+6 ions loaded TiO2 (WTO) precursor films were prepared by a modified sol–gel method and spin-coated onto microscopic glass slides. Pulsed KrF (248 nm, 13 ns) excimer laser was used to irradiate the WTO amorphous films at various laser parameters. Mesoporous and nanostructured films consisting of anatase and rutile were obtained after laser irradiation at room temperature. The effect of varying W+6 ions concentrations on structural and optical properties the WTO films was analyzed by X-ray diffraction, field-emission scanning electron microscope, UV-Vis spectrophotometer and transmission electron microscope before and after laser treatment. Films irradiated for 10 pulses at 65–75 mJ/cm2 laser fluence, exhibited anatase whereas higher parameters promoted the formation of rutile. XPS results revealed WO3 along with minor proportion of WO2 compounds after laser irradiation. Photo-absorbance of the WTO films was increased with increase in W+6 ions concentration in the film. TEM results exhibited a crystallite size of 15 nm which was confirmed from SEM results as well.  相似文献   

4.
We report here an experimental study of the ionic keV X-ray line emission from magnesium plasma produced by laser pulses of three widely different pulse durations (FWHM) of 45 fs, 25 ps and 3 ns, at a constant laser fluence of ∼1.5 × 104 J cm − 2. It is observed that the X-ray yield of the resonance lines from the higher ionization states such as H- and He-like ions decreases on decreasing the laser pulse duration, even though the peak laser intensities of 3.5 × 1017 W cm − 2 for the 45 fs pulses and 6.2 × 1014 W cm − 2 for the 25 ps pulses are much higher than 5 × 1012 W cm − 2 for the 3 ns laser pulse. The results were explained in terms of the ionization equilibrium time for different ionization states in the heated plasma. The study can be useful to make optimum choice of the laser pulse duration to produce short pulse intense X-ray line emission from the plasma and to get the knowledge of the degree of ionization in the plasma.  相似文献   

5.
Polyethersulfone (PES) films were processed with KrF laser irradiation of different pulse durations (τ). Scanning electron microscopy (SEM) and Raman spectroscopy were employed for the examination of the morphology and chemical composition of the irradiated surfaces, respectively. During ablation with 500 fs and 5 ps pulses, localized deformations (beads), micro-ripple and conical structures were observed on the surface depending on the irradiation fluence (F) and the number of pulses (N). In addition, the number density of the structures is affected by the irradiation parameters (τ, F, N). Furthermore, at longer pulse durations (τ = 30 ns), conical structures appear at lower laser fluence values, which are converted into columnar structures upon irradiation at higher fluences. The Raman spectra collected from the top of the structures following irradiation at different pulse durations revealed graphitization of the ns laser treated areas, in contrast to those processed with ultra-short laser pulses.  相似文献   

6.
High gradient laser plasma is formed by focused KrF laser pulses (248.3 nm, 450 fs, 1013 W/cm2) on liquids (water, styrene) and solids (silicon, aluminum, and polyimide). The hydrodynamic expansion of the plasma was studied by measuring the blue Doppler-shift of reflected probe pulses which was produced by a delayed dye laser (496.6 nm, 450 fs). The Doppler-shift corresponds to the velocity of the reflecting surface of the plasma which is defined by the critical electron density. Expansion is investigated as a function of delay time and laser intensity. The reflecting surface of the plasma accelerates over 1–2 ps after the onset of the ablating laser pulse. With increasing intensity up to 2×1013 W/cm2 the maximum average velocities are monotonously increasing up to 1–2×105 m/s. PACS 52.38.Kd; 52.50.Jm, 52.70.Kz  相似文献   

7.
The structural transformation dynamics of single-crystalline indium phosphide (InP) irradiated with 150 fs laser pulses at 800 nm has been investigated by means of time-resolved reflectivity measurements covering a time window from 150 fs up to 500 ns. The results obtained show that for fluences above a threshold of 0.16 J/cm2 thermal melting of the material occurs on the timescale of 1–2 ps. The evolution of the reflectivity on a longer timescale reveals the reflectivity of the liquid phase and shows resolidification times typically around 10–30 ns after which an amorphous layer several tens of nanometers thick is formed on the surface. This amorphous layer significantly alters the optical properties of the surface and finally leads to a reduced ablation threshold for subsequent laser pulses. Single-pulse ablation at higher fluences (>0.23 J/cm2) is preceded by an ultrafast phase transition (non-thermal melting) occurring within 400 fs after the arrival of the pulse to the surface. PACS 79.20.Ds; 78.47.+p; 64.70.-p  相似文献   

8.
This paper reports the generation of fs light pulses by a passively mode-locked InGaAs master oscillator power amplifier (MOPA) system. The laser system generates chirped pulses with 6.2 ps duration, a center wavelength of 922 nm and 4 GHz repetition rate. Pulse compression by an external grating compressor reduces the pulse duration to 580 fs. The average power of the compressed pulses of 851 mW corresponds to a peak power of 366 W.  相似文献   

9.
The selective ablation of thin (∼100 nm) SiO2 layers from silicon wafers has been investigated by applying ultra-short laser pulses at a wavelength of 800 nm with pulse durations in the range from 50 to 2000 fs. We found a strong, monotonic decrease of the laser fluence needed for complete ablation of the dielectric layer with decreasing pulse duration. The threshold fluence for 100% ablation probability decreased from 750 mJ/cm2 at 2 ps to 480 mJ/cm2 at 50 fs. Significant corruption of the opened Si surface has been observed above ∼1200 mJ/cm2, independent of pulse duration. By a detailed analysis of the experimental series the values for melting and breaking thresholds are obtained; the physical mechanisms responsible for the significant dependence on the laser pulse duration are discussed.  相似文献   

10.
The bonding structure of carbon films prepared by pulsed laser deposition is determined by the plasma properties especially the change of the kinetic energy. Using double laser pulses the ablation process and the characteristics of the generated plasma can be controlled by the setting of the delay between the pulses. In our experiments, amorphous carbon films have been deposited in vacuum onto Si substrates by double pulses from a Ti:sapphire laser (180 fs, λ = 800 nm, at 1 kHz) and a KrF laser system (500 fs, λ = 248 nm, at 5 Hz). The intensities have been varied in the range of 3.4 × 1012 to 2 × 1013 W/cm2. The morphology and the main properties of the thin layers were investigated as a function of the time delay between the two ablating pulses (0-116.8 ps) and as a function of the irradiated area on the target surface. Atomic force microscopy, spectroscopic ellipsometry and Raman-spectroscopy were used to characterize the films. It was demonstrated that the change of the delay and the spot size results in the modification of the thickness distribution of the layers, and the carbon sp2/sp3 bonding ratio.  相似文献   

11.
We have recently shown that irradiation of self-standing films of the biopolymers collagen and gelatine with single femtosecond laser pulses produces a nanofoaming layer with regular bubble size which can be controlled by wavelength selection. Following these initial studies, here we report on the temporal evolution of the foaming effect by measurements in situ and in real time of the change in the transmittance of a cw probe HeNe laser through the irradiated films. Self standing films of the biopolymers were irradiated with 90 fs laser pulses at 800, 400, and 266 nm. For fluences below and above the modification threshold a permanent attenuation of the transmission occurs (increasing with fluence). The initial decay of the transmission is fast (around few tens of ns), and is followed by dynamics in the longer timescale (micro and milliseconds). The temporal evolution of the transmission measured upon fs laser irradiation is similar with that determined in the irradiation of the biopolymer films at 248 nm with 25 ns laser pulses. The method allows separating in time the different processes occurring after irradiation that lead to a permanent nanofoaming structure, while the results allow us to understand the mechanisms of femtosecond laser processing of the biopolymers and their interest in biomedical applications.  相似文献   

12.
Cleaning of cultural assets, especially fragile organic materials like paper, is a part of the conservation process. Laser radiation as a non-contact tool offers prospects for that purpose. For the studies presented here, paper model samples were prepared using three different paper types (pure cellulose, rag paper, and wood-pulp paper). Pure cellulose serves as reference material. Rag and wood-pulp paper represent essential characteristics of the basic materials of real-world artworks. The papers were mechanically soiled employing pulverized charcoal. Pure and artificially soiled paper samples were treated with laser pulses of 28 fs (800 nm wavelength) and 8–12 ns (532 nm) duration in a multi pulse approach. Additionally, the cellulose reference material was processed with 30 ps (532 nm) laser pulses. Damage and cleaning thresholds of pure and soiled paper were determined for the different laser regimes. Laser working ranges allowing for removal of contamination and avoiding permanent modification to the substrate were found. The specimens prior and after laser illumination were characterized by light-optical microscopy (OM) and scanning electron microscopy (SEM) as well as multi spectral imaging analysis. The work extends previous nanosecond laser cleaning investigations on paper into the ultra-short pulse duration domain.  相似文献   

13.
The study of the laser pulse duration effect on the silicon micro-spikes morphology is presented. The microcones were produced by ultraviolet (248 nm) laser irradiation of doped Si wafers in SF6 environment. The laser pulse duration was adjusted at 450 fs, 5 ps and 15 ns. We have analyzed the statistical nature of the spikes’ morphological characteristics, such as periodicity and apex angle by exploiting image processing techniques, on SEM images of the irradiated samples. The correlation of the quantitative morphological characteristics with the laser parameters (pulse duration, laser fluence and number of pulses) provides new insight on the physical mechanisms, which are involved on the formation of Si microcones.  相似文献   

14.
ZnO thin films were grown on Si(1 0 0) substrates using pulsed laser deposition in O2 gas ambient (10 Pa) and at different substrate temperatures (25, 150, 300 and 400 °C). The influence of the substrate temperature on the structural and morphological properties of the films was investigated using XRD, AFM and SEM. At substrate temperature of T=150 °C, a good quality ZnO film was fabricated that exhibits an average grain size of 15.1 nm with an average RMS roughness of 3.4 nm. The refractive index and the thickness of the thin films determined by the ellipsometry data are also presented and discussed.  相似文献   

15.
Nanosecond-pulsed KrF (248 nm, 25 ns) and Nd:YAG (1064 nm, 532 nm, 355 nm, 5 ns) lasers were used to ablate a polycrystalline Si target in a background pressure of <10−4 Pa. Si films were deposited on Si and GaAs substrates at room temperature. The surface morphology of the films was characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Round droplets from 20 nm to 5 μm were detected on the deposited films. Raman Spectroscopy indicated that the micron-sized droplets were crystalline and the films were amorphous. The dependence of the properties of the films on laser wavelengths and fluence is discussed.  相似文献   

16.
A concept for a picosecond molecular switch is demonstrated using a photoinduced electron transfer reaction in a covalently linked, fixed distance donor–acceptor molecule D–A linked to a perylene-3,4-dicarboximide chromophore, C. The chromophore C possesses a strong charge transfer transition in its optical spectrum. Selective excitation of C within D–A–C using 530 nm, 130 fs laser pulses produces1 * C, which undergoes singlet–singlet energy transfer to produce1 * D, which in turn transfers an electron to A. If the D–A–C system is selectively excited with 416 nm, 130 fs laser pulses to produce D + – A  –C prior to excitation of C with 530 nm, 130 fs laser pulses, a 25% lower yield of1 * C is generated. The intense local electric field produced by D + – A  causes a 15 nm electrochromic red shift of the charge transfer absorption of C. Thus, the absorption of C at 530 nm is significantly diminished by the presence of D + – A  . The need to use two laser pulses with different wavelengths to observe these effects, and the resulting picosecond time response makes it possible to consider applications of this concept in the design of molecular switches.  相似文献   

17.
Laser ablation of thin Ni films on fused silica by 0.5 ps KrF-excimer-laser pulses at 248 nm is reported. The onset of material removal from different film thicknesses (0.1, 0.3, 0.6 and 1.0 m) was measured in a laser ionization time-of-flight mass spectrometer by the amount of Ni atoms vs laser fluence. Significant amounts of metal atoms are already evaporated at laser fluences around 20 mJ/cm2, a threshold up to 100 times smaller compared to the one for 14 ns pulses. In contrast to ns laser pulses, the ablation threshold for 0.5 ps pulses is independent of the film thickness. These results reflect the importance of thermal diffusion in laser ablation of strongly absorbing and thermally good conducting materials and prove that for ablation with short pulses, energy loss to the bulk is minimized.  相似文献   

18.
刘华刚  黄见洪  翁文  李锦辉  郑晖  戴殊韬  赵显  王继扬  林文雄 《物理学报》2012,61(15):154210-154210
以芯径为30 μm的掺Yb3+双包层光纤为增益介质, 利用非线性偏振旋转技术以及光栅-小孔结构组成的光谱滤波器提供有效的振幅调制, 实现了稳定的全正色散耗散孤子锁模运转. 激光器直接输出重复频率为76.6 MHz、平均功率达6.3 W的超短脉冲, 单脉冲能量可达82 nJ. 直接输出脉冲宽度为1.33 ps, 经腔外压缩后的宽度为377 fs. 通过调节光栅角度还实现了输出脉冲中心波长在1025—1078 nm范围内的调谐.  相似文献   

19.
Principal role of substrate types on the nonlinear optical properties of Au NP was investigated. Third harmonic generation (THG) studies were carried out for Au NP deposited on the Al-doped ZnO (AuNP/AZO) and Ga-doped ZnO (AuNP/GZO) substrates at fundamental wavelength of 20 ns Er:glass laser (generating at 1540 nm wavelength) during photostimulation by the 532 nm 15 ns laser pulses. Sizes of Au NP were 5 nm, 10 nm, 20 nm, and 30 nm. The output signal was registered at 513 nm. The photoinduced power density was increased from 0 up to 800 MW/cm2. So in our work we explore the role of the substrate on the optically stimulated non-linear optical properties during simultaneous photo stimulation near the inter-band transition. The results were studied depending on the type of substrate and the sizes of the deposited nanoparticles. The analysis was done within a framework of interaction between the photoinduced light and SPR wavelengths. Control of the photoinduced temperature was done.  相似文献   

20.
Laser-induced multilevel spallation in diamond-like carbon films is observed and studied for a wide range of laser parameters (=539, 800, 1064, and 1078 nm; =100 fs, 300 ps, 10 ns, and 150 ns; E>0.1 J/cm2). Laser irradiation causes the detachment and removal of material layers, whose lateral size is comparable with the irradiated area and whose thickness of 10–200 nm is much less than the DLC film thickness. The influence of the laser parameters on the thickness, size, and number of removed layers is examined. A qualitative explanation of laser-induced spallation in DLC films is proposed, which is based on the fact that the absorbed laser pulse produces a rapidly expanding surface layer of modified structure and reduced density. PACS 42.62.Cf; 61.80.Ba; 81.40.Wx  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号