首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Purpose

To investigate the influence of dual-source parallel radiofrequency (RF) excitation on clinical breast MR images.

Methods

A 3 T MR system with both dual-source and conventional single-source RF excitations was used to examine 22 patients. Axial TSE-T2WI with fat suppression, TSE-T1WI without fat suppression, THRIVE (3D field echo) and DWI (SE-EPI) were obtained by using both excitation techniques. Image homogeneity, image contrast and lesion conspicuity were measured or independently scored by two radiologists and were compared by paired-sample t test or Wilcoxon test.

Results

Both excitations revealed 24 lesions. For SE sequences using dual-source mode, image homogeneity was improved (P = 0.00), scan time was reduced, and ghost artifacts on DWI were significantly reduced (P = 0.00). However, image contrast was not increased and lesion conspicuity had no significant difference between two modes, except DWI on which lesion conspicuity was significantly improved (P = 0.00), due to less ghost artifacts. For field-echo sequence, image homogeneity, acquisition time, image contrast and lesion conspicuity had no significant difference between the two modes.

Conclusions

Dual-source parallel RF transmission has some added value for improving breast image quality. However, its value is limited in terms of improving lesion detection and characterization.  相似文献   

2.
This paper describes the application of continuous-wave (CW) and tone-burst (TB) vibro-acoustography (VA) experiments for imaging a flawed composite plate. For both modes, the ultrasound frequency is set at f1 = 3 MHz and f2 = 3 MHz + ∣Δf∣. The plate was placed at the focus of the transducer and scanned point-by-point over an area of 60 mm by 50 mm on its frontal face with an increment step equal to 0.25 mm/pixel. The resulting acoustic emission amplitude at ∣Δ f∣ is recorded. For the CW mode the difference frequency was set at ∣Δf∣ = 12.9 kHz. For the TB mode, the burst-emitted signal was 100 μs long at a pulse repetition frequency (PRF) of 100 Hz corresponding to bursts of 300 cycles at 3 MHz, and the difference frequency was set at ∣Δf∣ = 44 kHz. The resulting VA images readily show the shape of the flaws. The images also reveal considerable detail of internal substructures such as the fibers used to reinforce the plate. However, the CW VA image shows an artifact caused by the effect of ultrasound standing waves established between the plate and the concave surface of the transducer, resulting in masking some of the flaws. On the other hand, the TB-VA image is free from such artifact. Despite some advantages of using TB-VA, there are some limitations related to this mode. Advantages and limitations of using the two modes are discussed.  相似文献   

3.
The purpose of this study was to investigate the feasibility of diffusion-weighted imaging (DWI) in detecting synovitis of wrist and hand in patients with rheumatoid arthritis (RA) and evaluate its sensitivity, specificity and accuracy as compared to T2-weighted imaging (T2WI) with short tau inversion recovery (STIR) with the reference standard contrast-enhanced magnetic resonance imaging (CE-MRI). Twenty-five patients with RA underwent MR examinations including DWI, T2WI with STIR and CE-MRI. MR images were reviewed for the presence and location of synovitis of wrist and hand. The sensitivity, specificity and accuracy of DWI and T2WI with STIR were calculated respectively and then compared. All patients included in this study completed MR examinations and yielded diagnostic image quality of DWI. For individual joint, there was good to excellent inter-observer agreement (k = 0.62–0.83) using DWI images, T2WI with STIR images and CE-MR images, respectively. There was a significance between DWI and T2WI with STIR in analyzing proximal interphalangeal joints II–V, respectively (P < 0.05). The k-values for the detection of synovitis indicated excellent overall inter-observer agreements using DWI images (k = 0.86), T2WI with STIR images (k = 0.85) and CE-MR images (k = 0.91), respectively. Overall, DWI demonstrated a sensitivity, specificity and accuracy of 75.6%, 89.3% and 84.6%, respectively, for detection of synovitis, while 43.0%, 95.7% and 77.6% for T2WI with STIR, respectively. DWI showed positive lesions much better and more than T2WI with STIR. Our results indicate that DWI presents a novel non-invasive approach to contrast-free imaging of synovitis. It may play a role as an addition to standard protocols.  相似文献   

4.

Objective

This study was conducted to evaluate, with micro-computed tomography, the influence of low-intensity pulsed ultrasound on wound-healing in periodontal tissues.

Methods

Periodontal disease with Class II furcation involvement was surgically produced at the bilateral mandibular premolars in 8 adult male beagle dogs. Twenty-four teeth were randomly assigned among 4 groups (G): G1, periodontal flap surgery; G2, periodontal flap surgery + low-intensity pulsed ultrasound (LIPUS); G3, guided tissue regeneration (GTR) surgery; G4, GTR surgery plus LIPUS. The affected area in the experimental group was exposed to LIPUS. At 6 and 8 weeks, the X-ray images of regenerated teeth were referred to micro-CT scanning for 3-D measurement.

Results

Bone volume (BV), bone surface (BS), and number of trabeculae (Tb) in G2 and G4 were higher than in G1 and G3 (p < 0.05). BV, BS, and Tb.N of the GTR + LIPUS group were higher than in the GTR group. BV, BS, and Tb.N of the LIPUS group were higher than in the periodontal flap surgery group.

Conclusion

LIPUS irradiation increased the number, volume, and area of new alveolar bone trabeculae. LIPUS has the potential to promote the repair of periodontal tissue, and may work effectively if combined with GTR.  相似文献   

5.
High-resolution Fourier-transform infrared spectra between 1235 and 1680 cm−1 and subterahertz spectra between 250 and 630 GHz of monoisotopic 13CH335Cl have been recorded and analyzed simultaneously, with all Coriolis, α-resonance, and l-type interactions in the polyad of the v2 = 1, v5 = 1, and v3 = 2 levels taken into account. Several α-resonances (Δk = ±2, Δl = ?1) generating perturbation-allowed transitions have been assigned in the rovibrational spectra. These resonances enabled us to determine accurately and independently the ground state rotational and centrifugal distortion parameters A0 = 5.205 746 9 (55) cm−1 and . Even , which is, however, correlated to higher-order α-resonance terms, was determined. With 51 upper state parameters varied, about 5800 rovibrational wavenumbers and more than 550 rotational frequencies pertaining to the excited vibrational states were fitted within their experimental accuracy.  相似文献   

6.

Purpose

To investigate diffusion-weighted (DWI) and dynamic contrast-enhanced MR imaging (DCE-MRI) as early response predictors in cervical cancer patients who received concurrent chemoradiotherapy (CCRT).

Materials and methods

Sixteen patients with cervical cancer underwent DWI and DCE-MRI before CCRT (preTx), at 1 week (postT1) and 4 weeks (postT2) after initiating treatment, and 1 month after the end of treatment (postT3). At each point, apparent diffusion coefficient (ADC) and DCE-MRI parameters were measured in tumors and gluteus muscles (GM). Tumor response was correlated with imaging parameters or changes in imaging parameters at each point.

Results

At each point, ADC, Ktrans and Ve in tumors showed significant changes (P < 0.05), as compared with those of GM (P > 0.05). PostT1 tumor ADCs showed a significant correlation with tumor size response at postT2 (P = 0.041), and changes in tumor ADCs at postT1 had a significant correlation with tumor size (P = 0.04) and volume response (P = 0.003) at postT2. In tumors, preTx Ktrans and Ve showed significant correlations with tumor size at postT3 (P = 0.011) and tumor size response at postT2 (P = 0.019), respectively.

Conclusion

DWI and DCE-MRI, as early biomarkers, have the potential to evaluate therapeutic responses to CCRT in cervical cancers.  相似文献   

7.
Polymorphic transition of pyridinium tetrachloropalladate(II) was investigated by heat capacity measurements and by single crystal X-ray structural analysis. A large λ-type anomaly was detected at 240 K in the temperature dependence of the heat capacity. The low-temperature phase (LTP) belongs to the triclinic space group with a=6.856(1), b=7.293(1), c=7.721(1) Å, α=75.180(2)°, β=71.081(2)°, γ=81.109(3)° at 100 K, and the high-temperature phase (HTP) to the same space group with a=7.217(2), b=7.470(2), c=7.880(2) Å, α=73.438(3)°, β=65.195(3)°, γ=82.727(4)° at 293 K. The pyridinium cations are ordered antiferroelectrically in LTP. In HTP, however, an orientational disorder of the cation was observed. The energy difference between potential wells for the reorientation of pyridinium ion in HTP is discussed referring to the results of the present single crystal X-ray and heat capacity as well as the previous 1H NMR measurements. A five-site disorder model is shown to be consistent with both of the observations of 1H NMR and X-ray study.  相似文献   

8.
The crystal structure evolution of the Sr2GdRuO6 complex perovskite at high-temperature has been investigated over a wide temperature range between 298 K≤T≤1273 K. Powder X-ray diffraction measurements at room temperature and Rietveld analysis show that this compounds crystallizes in a monoclinic perovskite-type structure with P21/n (#14) space group and the 1:1 ordered arrangement of Ru5+ and Gd3+ cations over the six-coordinate M sites, with lattice parameters a=5.81032(8) Å, b=5.82341(4) Å, c=8.21939(7) Å, V=278.11(6) Å3 and angle β=90.311(2)o. The high-temperature analysis shows that this material suffers two-phase transitions. At 373 K it adopts a monoclinic perovskite structure with I2/m space group, and lattice parameters a=5.81383(2) Å, b=5.82526(4) Å, c=8.22486(1) Å, V=278.56(2) Å3 and angle β=90.28(2)o. Above of 773 K, it suffers a phase transition from monoclinic I2/m to tetragonal I4/m, with lattice parameters a=5.84779(1) Å, c=8.27261(1) Å, V=282.89(5) Å3 and angle β=90.02(9)o. The high-temperature phase transition from monoclinic I2/m to tetragonal I4/m is characterized by strongly anisotropic displacements of the anions.  相似文献   

9.
The nonmodulated and wavelength-modulated reflection spectra of CuGaS2 crystals for the polarization EIIc of 10 K are studied. The states n = 1, 2 and 3 of the excitons Γ4 (A-excitons) and n = 1, n = 2 of B- and C-excitons are found. The nonmodulated absorption spectra for the polarization Ec at 10 K have been studied. The states n = 1, 2 and 3 of Γ5 excitons are found. The main parameters of the A (Γ4, Γ5) and B, C exciton series at the energies of the longitudinal and transverse excitons Γ4 for the states n = 1 and n = 2, the effective masses of electrons and holes are determined. The photoluminescence peaks were observed at n = 3 and n = 4 of the excitons Γ5 in the luminescence spectra excited by the line 4880 Å of Ar+ laser. In the luminescence spectra the interference is found.  相似文献   

10.

Purpose

To evaluate the diagnostic performance of an apparent diffusion coefficient (ADC) and quantitative kinetic parameters in patients with newly diagnosed breast cancer.

Materials and Methods

We enrolled 169 lesions in 89 patients with breast cancer who underwent dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted imaging (DWI). Comparisons between benign and malignant lesions were performed for lesion type (mass or nonmass-like enhancement), size (≥ 1 cm or < 1 cm), ADC, kinetic parameters and the presence of a US correlate.

Results

There were 63 benign and 106 malignant lesions. The mean size and initial peak enhancement of the benign lesions were significantly lower than those of malignant lesions (P < 0.001 for both). The ADC of the benign lesions was significantly higher than that of malignant lesions (1.42 × 10− 3 mm2/sec vs. 1.04 × 10− 3 mm2/sec; P < 0.001). The area under the receiver operating characteristic curve (AUC) for predicting malignancy was 0.87 for the combined parameters of size, ADC, and initial peak enhancement, which was higher than those of each parameter.

Conclusions

Combination of quantitative kinetic parameters and ADC showed higher diagnostic performance for predicting malignancy than each parameter alone for the evaluation of patients with breast cancer.  相似文献   

11.
The Born-Oppenheimer (BO) equilibrium molecular structure () of cis-methyl formate has been determined at the CCSD(T) level of electronic structure theory using Gaussian basis sets of at least quadruple-ζ quality and a core correlation correction. The quadratic, cubic and semi-diagonal quartic force field in normal coordinates has also been computed at the MP2 level employing a basis set of triple-ζ quality. A semi-experimental equilibrium structure () has been derived from experimental ground-state rotational constants and the lowest-order rovibrational interaction parameters calculated from the ab initio cubic force field. To determine structures, it is important to start from accurate ground-state rotational constants. Different spectroscopic methods, applicable in the presence of internal rotation and used in the literature to obtain “unperturbed” rotational constants from the analysis and fitting of the spectrum, are reviewed and compared. They are shown to be compatible though their precision may be different. The and structures are in good agreement showing that, in the particular case of cis-methyl formate, the methyl torsion can still be treated as a small-amplitude vibration. The best equilibrium structure obtained for cis-methyl formate is: r(Cm-O) = 1.434 Å, r(O-Cc) = 1.335 Å, r(Cm-Hs) = 1.083 Å, r(Cm-Ha) = 1.087 Å, r(Cc-H) = 1.093 Å, r(CO) = 1.201 Å, (COC) = 114.4°, (CCHs) = 105.6°, (CCHa) = 110.2°, (OCH) = 109.6°, (OCO) = 125.5°, and τ(HaCOC) = 60.3°. The accuracy is believed to be about 0.001 Å for the bond lengths and 0.1° for the angles.  相似文献   

12.
13.
Ultrasound Nakagami parametric imaging is a useful tool for tissue characterization. Previous literature has suggested using a square with side lengths corresponding to 3 times the transducer pulse length as the minimum window for constructing the Nakagami image. This criterion does not produce sufficiently smooth images for the Nakagami image to characterize homogeneous tissues. To improve image smoothness, we proposed window-modulated compounding (WMC) Nakagami imaging based on summing and averaging the Nakagami images formed using sliding windows with varying window side lengths from 1 to N times the transducer pulse length in 1 pulse length step. Simulations (the number densities of scatterers: 2–16 scatterers/mm2) and experiments on fully developed speckle phantoms (the scatterer diameters: 20–106 μm) were conducted to suggest an appropriate number of frames N and to evaluate the image smoothness and resolution by analyzing the full width at half maximum (FWHM) of the parameter distribution and the widths of the image autocorrelation function (ACF), respectively. In vivo ultrasound measurements on rat livers without and with cirrhosis were performed to validate the practical performance of the WMC Nakagami image in tissue characterization. The simulation results showed that using a range of N from 7 to 10 as the number of frames for image compounding reduces the estimation error to less than 5%. Based on this criterion, the Nakagami parameter obtained from the WMC Nakagami image increased from 0.45 to 0.95 after increasing the number densities of scatterers from 2 to 16 scatterers/mm2. The FWHM of the parameter distribution (bins = 40) was 13.5 ± 1.4 for the Nakagami image and 9.1 ± 1.43 for the WMC Nakagami image, respectively (p-value < .05). The widths of the ACF for the Nakagami and WMC Nakagami images were 454 ± 5.36 and 458 ± 4.33, respectively (p-value > .05). In the phantom experiments, we also found that the FWHM of the parameter distribution for the WMC Nakagami image was smaller than that of the conventional Nakagami image (p-value < .05), and there was no significant difference of the ACF width between the Nakagami and WMC Nakagami images (p-value > .05). In the animal experiments, the Nakagami parameters obtained from the WMC Nakagami image for normal and cirrhotic rat livers were 0.62 ± 0.08 and 0.92 ± 0.07, respectively (p-value < .05). The results demonstrated that the WMC technique significantly improved the image smoothness of Nakagami imaging without resolution degradation, giving Nakagami model-based imaging the ability to visualize scatterer properties with enhanced image quality.  相似文献   

14.
This study proposes a new method for automatic, iterative image registration in the context of dynamic contrast-enhanced ultrasound (DCE-US) imaging. By constructing a cost function of image registration using a combination of the tissue and contrast-microbubble responses, this new method, referred to as dual-mode registration, performs alignment based on both tissue and vascular structures. Data from five focal liver lesions (FLLs) were used for the evaluation. Automatic registration based on the dual-mode registration technique and tissue-mode registration obtained using the linear response image sequence alone were compared to manual alignment of the sequence by an expert. Comparison of the maximum distance between the transformations applied by the automatic registration techniques and those from expert manual registration reference showed that the dual-mode registration provided better precision than the tissue-mode registration for all cases. The reduction of maximum distance ranged from 0.25 to 9.3 mm. Dual-mode registration is also significantly better than tissue-mode registration for the five sequences with p  -values lower than 0.030.03. The improved sequence alignment is also demonstrated visually by comparison of images from the sequences and the video playbacks of the motion-corrected sequences. This new registration technique better maintains a selected region of interest (ROI) within a fixed position of the image plane throughout the DCE-US sequence. This should reduce motion-related variability of the echo-power estimations and, thus, contribute to more robust perfusion quantification with DCE-US.  相似文献   

15.
The structure of the UFe3B2 compound has been refined down to R=0.022 and wR2=0.052 from single crystal X-ray diffraction data. This uranium boride crystallizes in the CeCo3B2 type-structure (P6/mmm space group no. 191, Z=1, ρ=10.79 g/cm3), with lattice parameters at room temperature a=0.5052(1) nm, c=0.3002(1) nm and V=0.664(1) nm3. Magnetization measurements made between 2 K and 800 K suggested that UFe3B2 is an antiferromagnet with a rather high Néel temperature of TN=268±5 K. No other magnetic transitions were observed down to the lowest studied temperature.  相似文献   

16.
The aim of this study was to evaluate the effect of the pulsed ultrasound therapy (PUT) in stimulating myoregeneration and collagen deposition in an experimental model of lacerative gastrocnemius muscle lesion in 30 Wistar rats. Fifteen rats were treated (TG) daily with 1 MHz pulsed ultrasound (50%) at 0.57 W/cm2 for 5 min, and 15 were control animals (CG). Muscle samples were analyzed on postoperative days 4, 7 and 14 through H&E, Picrosirius-polarization and immunohistochemistry for desmin. The lesions presented similar inflammatory responses in both treated and control groups. The areal fraction of fibrillar collagen was larger in the TG at 4 days post-operatively (17.53 ± 6.2% vs 6.79 ± 1.3%, p = 0.0491), 7 days (31.07 ± 7.45% vs 12.57 ± 3.6%, p = 0.0021) and 14 days (30.39 ± 7.3% vs 19.13 ± 3.51%, p = 0.0118); the areal fraction of myoblasts and myotubes was larger in the TG at 14 days after surgery (41.66 ± 2.97% vs 34.83 ± 3.08%, p = 0.025). Our data suggest that the PUT increases the differentiation of muscular lineage cells, what would favor tissue regeneration. On the other hand, it is also suggested that there is a larger deposition of collagenous fibers, what could mean worse functional performance. However, the percentage of fibers seems to have stabilized at day 7 in TG and kept increasing in CG. Furthermore, the collagen supramolecular organization achieved by the TG is also significant according to the Sirius red staining results.  相似文献   

17.
The two substates v4 = 20 (A1, 983.702 cm−1) and v4 = 2±2 (E, 986.622 cm−1) of the oblate symmetric top molecule, 14NF3, have been studied by high-resolution (2.5 × 10−3 cm−1) infrared spectroscopy of the overtones and 2ν4 − ν4 hot bands. Transitions of the overtone, the hot band, and the previously measured fundamental band were combined to yield 585 ground state combination differences differing in K by ±3, with Kmax = 36. Using the “loop-method,” a fit (standard deviation σ = 0.320 × 10−3 cm−1) provided a complete set of the hitherto not experimentally known axial ground state constants. In units of cm−1 these have the following values: . Upper state parameters were determined using a vibrationally isolated model. Considering l (2, 2) and l (2, −1) interactions between the v4 = 20 and v4 = 2±2 substates and effects accounting for the l (4, −2) interactions within the kl = −2 levels, 25 upper state parameters were obtained by fitting 2747 IR data (1842 transitions, 905 deduced energies, Jmax = 42, Kmax = 39) with σIR = 0.353 × 10−3 cm−1. Moreover, millimeter-wave spectroscopy furnished 86 transitions (Jmax = 16, Kmax = 13) measured on the v4 = 2 excited state. A merged fit, refining 24 parameters using the described model gave σIR = 0.365 × 10−3 cm−1 andσMMW = 0.855 × 10−6 cm−1 (26 kHz). The anharmonicity constants (in cm−1) are x44 = −0.84174 (2) and g44 =  + 0.73014 (1). In addition to this model, the D, Q, and L reductions of the rovibrational Hamiltonian were tested. Standard deviations σIR = 0.375 × 10−3 cm−1 and σMMW = 0.865 × 10−6 cm−1 were obtained for both D and L reductions, and σIR = 0.392 × 10−3 cm−1 and σMMW = 0.935 × 10−6 cm−1 for Q reduction. The unitary equivalence of the majority of the 18 tested relations between the derived parameters was satisfactorily fulfilled. This confirms that the v4 = 2 excited vibrational state can be considered in reasonable approximation to be isolated.  相似文献   

18.
The high resolution infrared spectra of monoisotopic F35Cl18O3 and F37Cl18O3 have been studied in the region of the ν4 fundamentals, centered at 1278.3 and 1263.3 cm−1, respectively. Large perturbations are observed in both bands due to a Fermi type anharmonic resonance with the ν2 + ν5 combination bands, centered at 1270.7 cm−1 in F35Cl18O3 and 1257.3 cm−1 in F37Cl18O3. In particular, they affect the kl > 0 levels of the v4 = 1 and v2 = v5 = 1 states which cross at kl ? 18 in F35Cl18O3 and kl ? 3 in F37Cl18O3, due to the opposite values of and . The Δl = Δk = ±2 and Δl = 0, Δk = ±3 essential resonances are also effective in the excited states of the dyad in F35Cl18O3, while in F37Cl18O3 only the Δl = Δk = ±2 one is active. In the spectrum of F35Cl18O3 3423 transitions have been assigned, 10% of them belonging to ν2 + ν5. The rovibrational parameters and the interaction constants between the v4 = 1 and v2 = v5 = 1 levels have been obtained. The depertubed band origins of ν4 and ν2 + ν5 are 1277.310567(165) and 1271.753733(195) cm−1, respectively, and the anharmonic resonance constant is 2.804416(153) cm−1. For F37Cl18O3, 3022 transitions have been assigned, 38% belonging to the ν2 + ν5 combination band. The depertubed band origins are 1260.856338(123) and 1259.872338(134) cm−1, for ν4and ν2 + ν5 and the constant is 2.9350669(405) cm−1. The equilibrium geometry of perchloryl fluoride, re (ClO) = 139.7(3) pm, re (ClF) = 161.0(5) pm, and αe (OClO) = 115.7(4) degree, has been determined using the Ae and Be equilibrium constants of the four symmetric isotopologues of perchloryl fluoride, F35/37Cl16O3 and F35/37Cl18O3.  相似文献   

19.
Mn-Zn ferrite powders (Mn0.5Zn0.5Fe2O4) were prepared by the nitrate-citrate auto-combustion method and subsequently annealed in air or argon. The effects of heat treatment temperature on crystalline phases formation, microstructure and magnetic properties of Mn-Zn ferrite were investigated by X-ray diffraction, thermogravimetric and differential thermal analysis, scanning electron microscopy and vibrating sample magnetometer. Ferrites decomposed to Fe2O3 and Mn2O3 after annealing above 550 °C in air, and had poor magnetic properties. However, Fe2O3 and Mn2O3 were dissolved after ferrites annealing above 1100 °C. Moreover, the 1200 °C annealed sample showed pure ferrite phase, larger saturation magnetization (Ms=48.15 emu g−1) and lower coercivity (Hc=51 Oe) compared with the auto-combusted ferrite powder (Ms=44.32 emu g−1, Hc=70 Oe). The 600 °C air annealed sample had the largest saturation magnetization (Ms=56.37 emu g−1) and the lowest coercivity (Hc=32 Oe) due to the presence of pure ferrite spinel phase, its microstructure and crystalline size.  相似文献   

20.
In order to have consistent and repeatable effects of sonodynamic therapy (SDT) on various cancer cells or tissue lesions we should be able to control a delivered ultrasound energy and thermal effects induced. The objective of this study was to investigate viability of rat C6 glioma cells in vitro depending on the intensity of ultrasound in the region of cells and to determine the exposure time inducing temperature rise above 43 °C, which is known to be toxic for cells. For measurements a planar piezoelectric transducer with a diameter of 20 mm and a resonance frequency of 1.06 MHz was used. The transducer generated tone bursts with 94 μs duration, 0.4 duty-cycle and initial intensity ISATA (spatial averaged, temporal averaged) varied from 0.33 W/cm2 to 8 W/cm2 (average acoustic power varied from 1 W to 24 W). The rat C6 glioma cells were cultured on a bottom of wells in 12-well plates, incubated for 24 h and then exposed to ultrasound with measured acoustic properties, inducing or causing no thermal effects leading to cell death. Cell viability rate was determined by MTT assay (a standard colorimetric assay for assessing cell viability) as the ratio of the optical densities of the group treated by ultrasound to the control group. Structural cellular changes and apoptosis estimation were observed under a microscope. Quantitative analysis of the obtained results allowed to determine the maximal exposure time that does not lead to the thermal effects above 43 °C in the region of cells for each initial intensity of the tone bursts used as well as the threshold intensity causing cell death after 3 min exposure to ultrasound due to thermal effects. The averaged threshold intensity was found to be about 5.7 W/cm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号