首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

To investigate the relationship between estimated glomerular filtration rate (eGFR) and parameters calculated using intravoxel incoherent motion (IVIM) imaging of the kidneys.

Materials and Methods

We studied 365 patients, divided into 4 groups based on eGFR levels (mL/min/1.73 m2): group 1, eGFR ≥ 80(n = 80); group 2, eGFR 60–80 (n = 156); group 3, eGFR 30–60 (n = 114); and group 4 ,eGFR < 30 (n = 15). IVIM imaging was used to acquire diffusion-weighted images at 12 b values. The diffusion coefficient of pure molecular diffusion (D), the diffusion coefficient of microcirculation or perfusion (D*), and perfusion fraction (f) were compared among the groups using group 1 as control.

Results

In the renal cortex, D* values were significantly lower in groups 2, 3, and 4 than in group 1. The D value of renal cortex was significantly low in only group 3. In the renal medulla, the D* and D values were significantly lower only in groups 2 and 3, respectively.

Conclusion

As renal dysfunction progresses, renal perfusion might be reduced earlier and affected more than molecular diffusion in the renal cortex. These changes are effectively detected by IVIM MR imaging.  相似文献   

2.

Purpose

Body fat distribution changes are associated with multiple alterations in metabolism. Therefore, the assessment of body fat compartments by MRI in animal models is a promising approach to obesity research. Standard T1-weighted (T1w) whole body MRI was used here to quantify different effects in the subcutaneous and visceral fat compartments in rats under treatment with an anorexiant.

Materials and methods

Twenty rats on a high caloric diet were investigated by the identical MRI protocol at baseline and after seven weeks. Ten rats received a treatment with sibutramine, 10 rats served as vehicle control group. To longitudinally assess body fat components, MRI analysis was used with two approaches: 2D slicewise graphic analysis (SGA) was compared with an automated 3D analysis algorithm (3DA).

Results

At the group level, fat volume differences showed a longitudinal increase of subcutaneous and visceral fat volumes for the control group, whereas the sibutramine group showed stable subcutaneous fat volumes and decrease in visceral fat volumes. SGA and 3DA volume determination showed significant correlations for subcutaneous fat volume (C = 0.85, p < 0.001), visceral fat volume (C = 0.87, p < 0.001), and total fat volume (C = 0.90, p < 0.001).

Conclusion

It could be demonstrated that computer-based analysis of T1w MRI could be used to longitudinally assess changes in body fat compartments in rats at the group level. In detail, it was possible to investigate the effect of sibutramine separate on the fat compartments in rats.  相似文献   

3.

Background

Due to limited SNR the cerebral applications of the intravoxel incoherent motion (IVIM) concept have been sparse. MRI hardware developments have resulted in improved SNR and this may justify a reassessment of IVIM imaging for non-invasive quantification of the cerebral blood volume (CBV) as a first step toward determining the optimal field strength.

Purpose

To investigate intravoxel incoherent motion imaging for its potential to assess cerebral blood volume (CBV) at three different MRI field strengths.

Materials and methods

Four volunteers were scanned twice at 1.5 T, 3 T as well as 7 T. By correcting for field-strength-dependent effects of relaxation, estimates of corrected CBV (cCBV) were obtained in deep gray matter (DGM), frontal gray matter (FGM) and frontal white matter (FWM), using Bayesian analysis. In addition, simulations were performed to facilitate the interpretation of experimental data.

Results

In DGM, FGM and FWM we obtained cCBV estimates of 2.2 ml/100 ml, 2.7 ml/100 ml, 1.4 ml/100 ml at 1.5 T; 3.7 ml/100 ml, 5.0 ml/100 ml, 3.2 ml/100 ml at 3 T and 15.5 ml/100 ml, 20.3 ml/100 ml, 7.0 ml/100 ml at 7 T.

Conclusion

Quantitative cCBV values obtained at 1.5 T and 3 T corresponded better to physiological reference values, while 7 T showed the largest deviation from expected values. Simulations of synthetic tissue voxels indicated that the discrepancy at 7 T can partly be explained by SNR issues. Results were generally more repeatable at 7 T (intraclass correlation coefficient, ICC = 0.84) than at 1.5 T (ICC = 0.68) and 3 T (ICC = 0.46).  相似文献   

4.

Purpose

Here we describe our first experience with contrast-enhanced (CE) MRI of breast cancer at 7 tesla (T), compared to 3 T and histopathology.

Materials and Methods

A 52 year old female patient with a mammographically suspicious breast mass (BI-RADS V) underwent 7 T CE-MRI. Results were described according to the BI-RADS-MRI criteria and compared to 3 T and histopathology.

Results

After contrast administration, a homogeneously enhancing, irregular spiculated mass was depicted at both 3 T and 7 T; sizes were identical. The most malignant kinetic curve was characterized by a rapid initial rise followed by a wash-out pattern in the delayed phase, i.e. a type 3 curve, at both field strengths. Even though T1-effects of contrast agents are suggested to be reduced at higher fields, quantification of contrast enhancement-to-noise ratio showed a ratio of 4.6 at 7 T and 2.8 at 3 T when comparing contrast-to-noise of the mass before and after contrast administration. Both examinations, using a single dose of gadolinium-based contrast agent, achieved good image quality. Final histopathological evaluation showed an invasive ductulolobular carcinoma with an intraductal component.

Conclusion

This initial experience suggests that clinical contrast-enhanced 7 T MRI of the breast is technically feasible and may allow BI-RADS-conform analysis.  相似文献   

5.

Purpose

To assess the usefulness of intravoxel incoherent motion diffusion weighted imaging (IVIM-DWI) for predicting lipiodol uptake in patients with hepatocellular carcinoma (HCC) after transcatheter arterial chemoembolization (TACE).

Materials and methods

The institutional review board approved this study. 44 HCC patients underwent IVIM-DWI and Gd-EOB-DTPA-enhanced MRI prior to TACE. Using post-TACE CT as a reference standard, each HCC was classified into either lipiodol good uptake (LGU) or poor uptake (LPU) group. Apparent diffusion coefficient (ADC), true diffusion coefficient (D), perfusion coefficient (D*), and perfusion fraction (f) in HCC were calculated. Arterial enhancement ratio (AER) and IVIM parameters were compared between those two groups using the Mann-Whitney U test.

Results

Of the 51 HCCs, 37 (72.5%) were LGU group and 14 (27.5%) were LPU group. AER of HCC was significantly higher in LGU than LPU (0.99 ± 0.54 and 0.67 ± 0.45; P = .034). ADC, D, and f values were not significantly different (P = .073, .059, and .196, respectively) between these two groups. D* was significantly elevated in LGU than LPU (48.10 ± 15.33 and 26.75 ± 9.55; P = .001).

Conclusion

Both AER derived from contrast enhanced MRI and D* values derived from IVIM-DWI for HCC were significantly higher in LGU than in LPU. These parameters would be helpful for predicting the lipiodol uptake.  相似文献   

6.

Objectives

To investigate and optimize diffusion-weighted imaging (DWI) acquisitions for pancreatic cancer at 3.0 T.

Methods

Forty-five patients with pancreatic cancer were examined by four DWI acquisitions with b values = 0 and 600 s/mm2 at 3.0 T, including breath-holding DWI (BH-DWI), respiratory-triggered DWI (TRIG-DWI), respiratory-triggered DWI with inversion–recovery technique (TRIGIR-DWI), and free-breathing DWI with inversion–recovery technique (FBIR-DWI). Artifacts, contrast ratio (CR), contrast-to-noise ratio (CNR) and apparent diffusion coefficient (ADC) of pancreatic cancer were statistically compared among DWI acquisitions.

Results

TRIGIR-DWI displayed the lowest artifacts and highest CR compared to other DWI acquisitions. CNRs of pancreatic cancer in TRIG-DWI and TRIGIR-DWI were statistically higher than that in FBIR-DWI and BH-DWI. Different ADCs between pancreatic cancer and noncancerous pancreatic tissues were noticed by a paired-samples T test in TRIG-DWI (p = 0.017), TRIGIR-DWI (p = 0.00001) and FBIR-DWI (p = 0.000041).

Conclusions

TRIGIR-DWI may be the optimal acquisition of DWI for pancreatic cancer at 3.0 T.  相似文献   

7.

Purpose

To investigate the value of apparent diffusion coefficient (ADC) to predict and monitor the therapy response for cervical cancer patients receiving concurrent radiochemotherapy, and to analyze the influence of different b-value combinations on ADC-based evaluation of treatment response.

Material and Methods

Seventy-five cervical cancer patients treated with radiochemotherapy received conventional MRI and DWI prior to therapy, after 2 weeks of therapy, after four weeks of therapy and after therapy completion. Treatment response was classified as complete response (CR, n = 35), partial response (PR, n = 22) and stable disease (SD, n = 18), which was determined according to final tumor size after 6 months of therapy completion. Dynamic changes of apparent diffusion coefficients (ADC) and tumor size in the three tumor groups were observed and compared. All the ADCs were calculated from b = 0, 600 s/mm2 and b = 0, 1000 s/mm2.

Results

The ADC increased percentage was higher in CR group than those in PR and SD groups after two weeks and four weeks of therapy, with significant differences in absolute ADCs between CR and PR, SD groups after therapy completion; the overall discriminatory capability for differentiation of CR and PR, SD groups was higher for high b-value combination (0, 1000 s/mm2) than for low b-value combination (0, 600 s/mm2).

Conclusion

DWI can be used as a predictive and monitoring biomarker of treatment response to radiochemotherapy in patients with cervical cancer. High b-value combination may be more reliable to evaluate the treatment response for cervical cancer.  相似文献   

8.

Purpose

To investigate the feasibility of combining GESFIDE with PROPELLER sampling approaches for simultaneous abdominal R2 and R2* mapping.

Materials and Methods

R2 and R2* measurements were performed in 9 healthy volunteers and phantoms using the GESFIDE-PROPELLER and the conventional Cartesian-sampling GESFIDE approaches.

Results

Images acquired with the GESFIDE-PROPELLER sequence effectively mitigated the respiratory motion artifacts, which were clearly evident in the images acquired using the conventional GESFIDE approach. There was no significant difference between GESFIDE-PROPELLER and reference MGRE R2* measurements (p = 0.162) whereas the Cartesian-sampling based GESFIDE methods significantly overestimated R2* values compared to MGRE measurements (p < 0.001).

Conclusion

The GESFIDE-PROPELLER sequence provided high quality images and accurate abdominal R2 and R2* maps while avoiding the motion artifacts common to the conventional Cartesian-sampling GESFIDE approaches.  相似文献   

9.

Purpose

The purpose was to evaluate radiofrequency (RF)-related heating of commonly used extracranial neurosurgical implants in 7-T magnetic resonance imaging (MRI).

Materials and methods

Experiments were performed using a 7-T MR system equipped with a transmit/receive RF head coil. Four commonly used titanium neurosurgical implants were studied using a test procedure adapted from the American Society for Testing and Materials Standard F2182-11a. Implants (n = 4) were tested with an MRI turbo spin echo pulse sequence designed to achieve maximum RF exposure [specific absorption rate (SAR) level = 9.9 W/kg], which was further validated by performing calorimetry. Maximum temperature increases near each implant's surface were measured using fiberoptic temperature probes in a gelled-saline-filled phantom that mimicked the conductive properties of soft tissue. Measurement results were compared to literature data for patient safety.

Results

The highest achievable phantom averaged SAR was determined by calorimetry to be 2.0 ± 0.1 W/kg due to the highly conservative SAR estimation model used by this 7-T MR system. The maximum temperature increase at this SAR level was below 1.0 °C for all extracranial neurosurgical implants that underwent testing.

Conclusion

The findings indicated that RF-related heating under the conditions used in this investigation is not a significant safety concern for patients with the particular extracranial neurosurgical implants evaluated in this study.  相似文献   

10.

Objective

To assess the diagnostic value of elastosonography for thyroid microcarcinoma (TMC), particularly with regard to elasticity score (ES) and strain ratio (SR).

Methods

Conventional ultrasound and elastosonography were performed for 487 thyroid micronodules before surgery. We set the histology as the reference standard. The ES and SR values, as well as their diagnostic threshold and efficiency, were compared and analyzed by the receiver-operating characteristic (ROC) curve. Additional comparisons between TMC patients with and without extracapsular extension were also performed.

Results

Statistically significant differences (P < 0.05) in both ES and SR values were detected among the TMC and benign groups. The area under the ROC curve of SR was significantly greater than that of ES (0.956 and 0.844, respectively; P < 0.05). Using ES ? 3 and SR ? 3.65 as diagnostic threshold values, the diagnostic sensitivity, specificity, and accuracy of ES for differentiating benign and malignant nodules were 79.9%, 72.3%, and 80.5%, respectively, whereas those of SR were 86.6%, 85.3%, and 89.4%, respectively. The maximum diameter, microcalcification status, aspect ratio, bilateral cervical lymph node metastasis, and SR values of nodules with extracapsular extension (A1 subgroup) were greater than those of nodules without extracapsular extension (A2 subgroup).

Conclusions

Elasticity imaging technology not only can help differentiate between benign and malignant thyroid micronodules but also allow SR values to provide accurate and objective information on tissue hardness and to predict TMC extracapsular extension or even bilateral cervical lymph node metastasis.  相似文献   

11.

Purpose

To investigate an effective time-resolved variable-density random undersampling scheme combined with an efficient parallel image reconstruction method for highly accelerated aortic 4D flow MR imaging with high reconstruction accuracy.

Materials and Methods

Variable-density Poisson-disk sampling (vPDS) was applied in both the phase-slice encoding plane and the temporal domain to accelerate the time-resolved 3D Cartesian acquisition of flow imaging. In order to generate an improved initial solution for the iterative self-consistent parallel imaging method (SPIRiT), a sample-selective view sharing reconstruction for time-resolved random undersampling (STIRRUP) was introduced. The performance of different undersampling and image reconstruction schemes were evaluated by retrospectively applying those to fully sampled data sets obtained from three healthy subjects and a flow phantom.

Results

Undersampling pattern based on the combination of time-resolved vPDS, the temporal sharing scheme STIRRUP, and parallel imaging SPIRiT, were able to achieve 6-fold accelerated 4D flow MRI with high accuracy using a small number of coils (N = 5). The normalized root mean square error between aorta flow waveforms obtained with the acceleration method and the fully sampled data in three healthy subjects was 0.04 ± 0.02, and the difference in peak-systolic mean velocity was − 0.29 ± 2.56 cm/s.

Conclusion

Qualitative and quantitative evaluation of our preliminary results demonstrate that time-resolved variable-density random sampling is efficient for highly accelerating 4D flow imaging while maintaining image reconstruction accuracy.  相似文献   

12.

Purpose

To evaluate whether a non-linear blood ΔR2*-versus-concentration relationship improves quantitative cerebral blood flow (CBF) estimates obtained by dynamic susceptibility contrast (DSC) MRI in a comparison with Xe-133 SPECT CBF in healthy volunteers.

Material and Methods

Linear as well as non-linear relationships between ΔR2* and contrast agent concentration in blood were applied to the arterial input function (AIF) and the venous output function (VOF) from DSC-MRI. To reduce partial volume effects in the AIF, the arterial time integral was rescaled using a corrected VOF scheme.

Results

Under the assumption of proportionality between the two modalities, the relationship CBF(MRI) = 0.58CBF(SPECT) (r = 0.64) was observed using the linear relationship and CBF(MRI) = 0.51CBF(SPECT) (r = 0.71) using the non-linear relationship.

Discussion

A smaller ratio of the VOF time integral to the AIF time integral and a somewhat better correlation between global DSC-MRI and Xe-133 SPECT CBF estimates were observed using the non-linear relationship. The results did not, however, confirm the superiority of one model over the other, potentially because realistic AIF signal data may well originate from a combination of blood and surrounding tissue.  相似文献   

13.

Introduction

We investigated microstructural changes in the spinal cord, separately for white matter and gray matter, in patients with cervical spondylosis by using diffusional kurtosis imaging (DKI).

Methods

We studied 13 consecutive patients with cervical myelopathy (15 affected sides and 11 unaffected sides). After conventional magnetic resonance (MR) imaging, DKI data were acquired by using a 3 T MR imaging scanner. Values for fractional anisotropy (FA), apparent diffusion coefficient (ADC), and mean diffusional kurtosis (MK) were calculated and compared between unaffected and affected spinal cords, separately for white matter and gray matter.

Results

Tract-specific analysis of white matter in the lateral funiculus showed no statistical differences between the affected and unaffected sides. In gray matter, only MK was significantly lower in the affected spinal cords than in unaffected spinal cords (0.60 ± 0.18 vs. 0.73 ± 0.13, P = 0.0005, Wilcoxon’s signed rank test).

Conclusions

MK values in the spinal cord may reflect microstructural changes and gray matter damage and can potentially provide more information beyond that obtained with conventional diffusion metrics.  相似文献   

14.

Purpose

To assess the feasibility of measuring pulmonary artery (PA) pulse wave velocity (PWV) in children breathing ambient air and 12% oxygen.

Methods

Velocity-encoded phase-contrast MR images of the PA were acquired in 15 children, aged 9–12 years, without evidence of cardiac or pulmonary diseases. PWV was derived as the ratio of flow to area changes during early systole. Each child was scanned twice, in air and after at least 20 minutes into inspiratory hypoxic challenge. Intra-observer and inter-observer variability and repeatability were also compared.

Results

PA PWV, which was successfully measured in all subjects, increased from 1.31 ± 0.32 m/s in air to 1.61 ± 0.58 m/s under hypoxic challenge (p = 0.03). Intra- and inter-observer coefficients of variations were 9.0% and 15.6% respectively. Good correlation within and between observers of r = 0.92 and r = 0.72 respectively was noted for PA PWV measurements. Mean (95% limit of agreement) intra- and inter-observer agreement on Bland–Altman analysis were − 0.02 m/s (− 0.41–0.38 m/s) and -0.28 m/s (− 1.06–0.49 m/s).

Conclusion

PA PWV measurement in children using velocity-encoded MRI is feasible, reproducible and sufficiently sensitive to detect differences in PA compliance between normoxia and hypoxia. This technique can be used to detect early changes of PA compliance and monitor PAH in children.  相似文献   

15.

Objective

The purpose of this study was to assess the influence of liver cirrhosis and portal hypertension on diffusion coefficients of the spleen.

Material and Methods

We retrospectively evaluated 50 patients with liver cirrhosis and 50 patients without any history of liver disease who underwent magnetic resonance imaging of the upper abdomen, including echo planar diffusion-weighted imaging using b values of 50, 300 and 600 mm2/s. Spleen apparent diffusion coefficient (ADC), liver ADC, muscle ADC and normalized spleen ADC (defined as the ratio of spleen ADC to muscle ADC) were compared between cirrhotic patients and patients in the control group and correlated with Child–Pugh stages. Reproducibility was assessed by measuring interclass correlation coefficient (n = 11). Additionally, in eight patients, ADC measurements were performed 1 day before and 3 days after transjugular intrahepatic portosystemic shunt (TIPSS) implantation.

Results

Compared with control subjects, patients with cirrhosis and portal hypertension had significantly higher spleen ADCs (P = .0001). There was a statistically significant correlation between Child–Pugh grade and spleen ADC (Pearson correlation coefficient, observer 1 r = 0.6, P = .0001; observer 2 r = 0.5, P = .0001). After TIPSS implantation, we observed a reduction in spleen ADC values. Spleen ADC measurements showed a high reproducibility (interclass correlation coefficient 0.75, P = .001).

Conclusion

Our data suggest that different stages of liver cirrhosis and portal hypertension correlate with ADC values of the spleen. Furthermore, ADC values of the spleen decrease after TIPSS implantation. Further studies are required to understand the potential clinical values of these observations.  相似文献   

16.

Purpose

To determine whether gadolinium ethoxybenzyldiethylenetriaminepentaacetic acid (Gd-EOB-DTPA) administration affects hepatic fat quantification by magnetic resonance spectroscopy (MRS) using the fast breath-hold high-speed T2-corrected multiecho (HISTO) technique.

Materials and Methods

Seventy-six patients underwent Gd-EOB-DTPA-enhanced liver MR and 15 sec breath-hold HISTO MRS (4 times), twice before and twice after Gd-EOB-DTPA administration. Two consecutive MRSs were performed immediately before the dynamic study. Post-contrast MRS was performed twice continuously, approximately 15 min after contrast injection, prior to obtaining 20-min hepatobiliary phase images. We used paired t-test and intraclass correlation coefficient (ICC) to evaluate the variability of the mean fat fraction (FF) on pre-contrast MRS and post-contrast MRS and the effect of the contrast agent on the mean FF.

Results

The mean FFs were not significantly different between pre-contrast MRS and post-contrast MRS (6.50% ± 6.54 versus 6.70% ± 6.61, P = 0.15). The ICC of FF calculation between pre- and post-contrast MRS was 0.984. The ICCs for the FF magnitude between pre- and post-contrast MRS were 0.452, 0.771, and 0.995 for FF < 5%, FF 5–10%, and FF ≥ 10%, respectively.

Conclusion

Gd-EOB-DTPA does not appear to influence hepatic fat quantification, especially for patients with hepatic steatosis.  相似文献   

17.

Objective

Applying shock waves to the heart has been reported to stimulate the heart and alter cardiac function. We hypothesized that shock waves could be used to diagnose regional viability.

Method

We used a Langendorff model to investigate the acute effects of shock waves at different energy levels and times related to systole, cycle duration and myocardial function.

Results

We found only a small time window to use shock waves. Myocardial fibrillation or extrasystolic beats will occur if the shock wave is placed more than 15 ms before or 30 ms after the onset of systole. Increased contractility and augmented relaxation were observed after the second beat, and these effects decreased after prolonging the shock wave delay from 15 ms before to 30 ms after the onset of systole. An energy dependency could be found only after short delays (−15 ms). The involved processes might include post-extrasystolic potentiation and simultaneous pacing.

Conclusion

In summary, we found that low-energy shock waves can be a useful tool to stimulate the myocardium at a distance and influence function.  相似文献   

18.

Objectives

Diffusion imaging represents a new imaging tool for the diagnosis of breast cancer. This study aims to investigate the role of diffusion-weighted MRI with background body signal suppression (DWIBS) for evaluating breast lesions.

Methods

90 patients were prospectively evaluated by MRI with STIR, TSE-T2, contrast enhanced THRIVE-T1 and DWIBS sequences. DWIBS were analyzed searching for the presence of breast lesions and calculating the ADC value. ADC values of ≤ 1.44 × 10- 3 mm2/s were considered suspicious for malignancy. This analysis was then compared with the histological findings. Sensitivity, specificity, diagnostic accuracy (DA), positive predictive value (PPV) and negative (NPV) were calculated.

Results

In 53/90 (59%) patients, DWIBS indicated the presence of breast lesions, 16 (30%) with ADC values of  > 1.44 and 37 (70%) with ADC ≤ 1.44. The comparison with histology showed 25 malignant and 28 benign lesions. DWIBS sequences obtained sensitivity, specificity, DA, PPV and NPV values of 100, 82, 87, 68 and 100%, respectively.

Conclusion

DWIBS can be proposed in the MRI breast protocol representing an accurate diagnostic complement.  相似文献   

19.

Purpose

To determine whether healed myocardial infarction alters dynamic contrast-enhancement (DCE) curve shapes as well as late gadolinium-enhancement (LGE).

Materials and methods

Twenty patients with chronic myocardial infarction underwent MR imaging at 1.5 T with blood and myocardial T1 measurements before and after contrast administration for forty minutes. Viable and infarcted myocardial partition coefficients were calculated using multipoint slope methods for ten different DCE sampling intervals and windows. Partition coefficients and coefficients of determination were compared with paired statistical tests to assess the linearity of DCE curve shapes over the 40 min time period.

Results

Calculated partition coefficients did not vary significantly between methods (p = 0.325) for viable myocardium but did differ for infarcted myocardium (p < 0.001), indicating a difference in infarcted DCE. There was a significant difference between viable and infarcted myocardial partition coefficients estimates for all methods with the exception of methods that included measurements during the first 10 min after contrast agent administration.

Conclusion

Myocardial partition coefficients calculated from a slope calculation vary in healed myocardial infarction based on the selection of samples due to non-linear DCE curve shapes. Partition coefficient calculations are insensitive to data sampling effects in viable myocardium due to linear DCE curve shapes.  相似文献   

20.

Objective

Equivalent cross-relaxation rate imaging (ECRI) is an MRI technique used to evaluate qualitative changes in protein-water interactions. We aimed to prospectively evaluate the utility of ECRI for classification of adipocytic tumors.

Materials and Methods

Institutional Review Board approval was obtained and all patients provided informed consent. Study participants included 40 patients with adipocytic tumors who were diagnosed with lipomas (n = 22), atypical lipomatous tissue/well-differentiated liposarcoma (ALT/WDL; n = 9), myxoid/round cell liposarcoma (MyL; n = 6), and dedifferentiated liposarcoma (DDL; n = 3), and 20 control patients for whom subcutaneous fat in the buttock or thigh was analyzed.

Results

Mean ECR values of lipomas, ALT/WDL, and subcutaneous fat were low, and those of MyL and DDL were high. Mean ECR values of MyL and DDL were significantly higher than those of ALT/WDL. The cut-off value was 5.1%. There was a positive correlation between ECR value, pathological grade, and cell density in adipocytic tumors.

Conclusion

The ECR value positively correlates with pathological grade and cell density of adipocytic tumors. Our findings suggest that ECRI is a useful method for preoperative evaluation of adipocytic tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号