首页 | 本学科首页   官方微博 | 高级检索  
     检索      


High-resolution FTIR and MMW study of the v4 = 2 (A1, E) excited state of NF3 near 985 cm: the axial ground state rotational constants derived by the “loop-method”
Authors:N Ben Sari-Zizi  J Demaison  B Bakri  H Bürger
Institution:a Laboratoire de Spectronomie Physique Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, B. P. 1014, Rabat, Morocco
b Laboratoire de Physique des Lasers, Atomes et Molécules, UMR CNRS 8523, Université de Lille 1, 59655 Villeneuve d’Ascq Cedex, France
c Anorganische Chemie, FB C, Universität, D-42097 Wuppertal, Germany
Abstract:The two substates v4 = 20 (A1, 983.702 cm−1) and v4 = 2±2 (E, 986.622 cm−1) of the oblate symmetric top molecule, 14NF3, have been studied by high-resolution (2.5 × 10−3 cm−1) infrared spectroscopy of the View the MathML source overtones and 2ν4 − ν4 hot bands. Transitions of the View the MathML source overtone, the View the MathML source hot band, and the previously measured View the MathML source fundamental band were combined to yield 585 ground state combination differences differing in K by ±3, with Kmax = 36. Using the “loop-method,” a fit (standard deviation σ = 0.320 × 10−3 cm−1) provided a complete set of the hitherto not experimentally known axial ground state constants. In units of cm−1 these have the following values: View the MathML source. Upper state parameters were determined using a vibrationally isolated model. Considering l (2, 2) and l (2, −1) interactions between the v4 = 20 and v4 = 2±2 substates and effects accounting for the l (4, −2) interactions within the kl = −2 levels, 25 upper state parameters were obtained by fitting 2747 IR data (1842 transitions, 905 deduced energies, Jmax = 42, Kmax = 39) with σIR = 0.353 × 10−3 cm−1. Moreover, millimeter-wave spectroscopy furnished 86 transitions (Jmax = 16, Kmax = 13) measured on the v4 = 2 excited state. A merged fit, refining 24 parameters using the described model gave σIR = 0.365 × 10−3 cm−1 andσMMW = 0.855 × 10−6 cm−1 (26 kHz). The anharmonicity constants (in cm−1) are x44 = −0.84174 (2) and g44 =  + 0.73014 (1). In addition to this model, the D, Q, and L reductions of the rovibrational Hamiltonian were tested. Standard deviations σIR = 0.375 × 10−3 cm−1 and σMMW = 0.865 × 10−6 cm−1 were obtained for both D and L reductions, and σIR = 0.392 × 10−3 cm−1 and σMMW = 0.935 × 10−6 cm−1 for Q reduction. The unitary equivalence of the majority of the 18 tested relations between the derived parameters was satisfactorily fulfilled. This confirms that the v4 = 2 excited vibrational state can be considered in reasonable approximation to be isolated.
Keywords:Infrared  Millimeterwave  Excited state  Trifluoramine  NF3
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号