首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
40Cr钢表面激光熔覆层的磨损性能   总被引:4,自引:3,他引:1       下载免费PDF全文
 为研究模具钢熔覆层的磨损性能,采用铁基粉在40Cr钢表面进行激光熔覆,以激光熔覆层为上试样,GCr15钢珠为下试样,采用HT-500磨损试验机进行摩擦磨损试验,并与40Cr基体的磨损性能相对比。利用表面形貌仪测量磨痕深度和宽度。研究结果表明:载荷小于250 g时,相同载荷下基体的摩擦系数大。载荷小于300 g时,随磨损时间延长,熔覆层、基体的摩擦系数都随着载荷增加而减小。当载荷为300 g时,基体的摩擦系数在0.563~0.589之间变化,平均值为0.576,且随时间逐渐升高,耐磨性变差;熔覆层的磨擦系数在0.431~0.457之间变化,平均摩擦系数为0.444,磨痕深度和宽度分别是0.65 mm和1.096 μm,且随时间逐渐下降,表现了良好的耐磨性能。当载荷增加到500 g时,平均摩擦系数和磨痕深度比300 g时分别增加了75%和47倍,且摩擦系数逐渐升高,磨损性能下降。  相似文献   

2.
一般认为滑动摩擦力正比于接触面之间的正压力,而摩擦系数只和接触面材料有关,与摩擦副之间的相对运动速度大小无关。在对IYPT2020第13课题“摩擦振子”的研究中,我们搭建了适用的实验设备,得到摩擦振子振幅先随时间增大,然后受摩擦轮转速限制而稳定在一定值的实验结果。由理论分析可知,振幅随时间增大的现象是摩擦系数随摩擦副之间的相对速度增大而减小决定的。摩擦系数随速度变化的定量测量证明了这一依赖关系。  相似文献   

3.
郑瑞伦  陈志谦  张翠玲  刘俊 《物理学报》2003,52(9):2284-2289
建立了HgS/CdS/ HgS球状纳米系统物理模型和电子状态满足的方程.应用S矩阵理论,探讨了 s态电子的能量和寿命以及概率分布随势垒和势阱宽度的变化规律.结果表明:电子能量和寿 命随垒势宽度增大而增大;电子能量随阱宽增大而减小,而寿命随阱宽增大而增大;层间相 互作用对结果有重要影响. 关键词: 球状纳米系统 电子能量和寿命 电子概率分布 势垒势阱宽度  相似文献   

4.
确立了柱状纳米系统电子势能随距离的变化关系,以HgS/CdS/HgS柱状纳米系统为例,讨论了层间作用对电子能谱的影响.结果表明:电子能量随势垒宽度和波矢的增大而增大,随势阱宽度的增大而减小;层间互作用会增大电子能量,但不会改变电子能量随势阱和势垒以及波矢的变化趋势. 关键词: 层间作用势 HgS/CdS/HgS柱状纳米系统 电子能量  相似文献   

5.
贺兵香  何济洲 《物理学报》2010,59(6):3846-3850
研究了具有不同温度和不同化学势的两个热库中电子通过一个双势垒InAs/InP纳米线异质结进行的传输.利用传输矩阵法得到了电子的传输概率,进而计算得到电子传输所产生的热流.通过数值计算给出了热电子制冷机的性能特征曲线.进一步分析了势垒宽度和势阱宽度对制冷机工作性能的影响.研究发现,当势阱宽度一定时,随着势垒宽度变大共振中心能级的位置变大,共振能级宽度变小,同一偏压对应的制冷率变小,相对制冷系数变大.当势垒宽度一定时,随着势阱宽度变大,同一偏压对应的相对制冷系数变小.当势垒和势阱宽度同时变化时,得到的曲线与势垒宽度一定势阱宽度变化时得到的曲线基本相似.这表明制冷率和相对制冷系数主要受势阱宽度变化的影响.  相似文献   

6.
赵翠兰  王丽丽  赵丽丽 《物理学报》2015,64(18):186301-186301
量子点作为一种重要的低维纳米结构, 近年来在单光子光源和新型量子点单光子探测器的研究引起了人们的广泛关注, 对各种势阱中量子点性质的研究已取得了重要成果. 但是大多理论研究都局限于无限深势阱, 而有限深势阱更具有实际意义. 利用平面波展开、幺正变换和变分相结合的方法研究了有限深势阱中极化子激发态能量及激发能随势阱形状和量子盘大小的变化规律. 数值计算结果表明: 极化子的激发态能量、激发能随势垒高度或宽度的增大而增大, 原因是势垒愈高、愈宽, 电子穿透势垒的可能性愈小, 电子在阱内运动的可能性愈大, 进而导致极化子的激发态能量和激发能均随势垒高度和宽度的增大而增大; 极化子的激发态能量和激发能随量子盘半径的增大而减小, 表明量子盘具有显著的量子尺寸效应; 极化子的激发态能量随有效受限长度的增加而减小, 原因是有效受限长度愈大, 有效受限强度愈小, 电子受到的束缚愈弱、振动愈慢、势能愈小, 进而导致基态能量、激发态能量减小; 同时由于激发态能量较基态能量减小慢, 使得激发能随之增加. 研究结果对量子点的应用具有一定的理论指导意义.  相似文献   

7.
用薛定谔方程和泊松方程自洽计算的方法研究了Al0.75Ga025N/GaN对称双量子阱(DQWs)中子带间跃迁(ISBT)的波长和吸收系数对中间耦合势垒高度、中间耦合势垒宽度、势阱宽度和势垒掺杂浓度的依赖关系.研究发现,第一奇序子带S1ood与第二偶序子带S2evenISBT波长随着中间耦合势垒高度的降低而变短.当中间耦合势垒高度高于0.62 eV时,Slotld-S:一ISBT吸收系数随着中间耦合势垒的降低而增加.当减小AlxGa1-xN/GaN的DQWs中间耦合势垒宽度时,S1odd-S2evenISBT波长将变短,其吸收系数变大.另一方面,当对称DQWs的势阱宽度大于1.9 nm时,S1odd-S2evenISBT波长随着势阱的变窄而减小,S1odd-S2evenISBT吸收系数随着势阱的变窄而增加.当势垒中的掺杂浓度小于1018/cm3时,S1odd-S2evenISBT波长基本不随掺杂浓度变化,而吸收系数随掺杂浓度的增加而增加.这些结果对于利用DQWs实现工作于光纤通信波段超快的、基于三能级或四能级系统的双色光电子器件的应用具有指导意义.  相似文献   

8.
建立了势阱宽度变化的一维无限深势阱的动态模型,通过求解含时间的薛定谔方程,证明粒子通常处于叠加态,得出了系统能量处于不同值的概率,而这一概率可以理解为无辐射跃迁的概率.  相似文献   

9.
石墨对混杂增强铜基复合材料摩擦磨损特性的影响   总被引:2,自引:0,他引:2  
研究了石墨颗粒对混杂增强铜基复合材料摩擦磨损特性的影响。结果表明,石墨颗粒的加入同时降低了复合材料和配偶件的磨损率,有利于摩擦副系统整体寿命的提高。石墨颗粒赋予了复合材料优良的减摩特性,使滑动摩擦过程更加平稳。混杂增强铜基复合材料磨损表面形成的富石墨的MML层是导致摩擦系数降低和摩擦副系统耐磨性提高的主要原因,而SiC颗粒的承载作用则有利于石墨固体润滑作用的发挥。  相似文献   

10.
汤乃云  陈效双  陆卫 《物理学报》2005,54(5):2277-2281
采用有效质量模型和非线性弹性理论计算了不同尺寸InAs/GaAs量子点的静压光谱发光峰的 压力系数(PC).量子点峰位随压力的变化主要来自禁带宽度和电子束缚能随压力变化两方面 的贡献.由于InAs/GaAs量子点是一个应变体系,体系的晶格常数,失配应变和弹性系数均随 外加压力变化,使得加压后量子点的禁带宽度相对于非应变体系略有减小,同时势垒高度增 加,电子束缚程度增加.两者共同作用引起的InAs应变层的禁带宽度压力系数减小是导致量 子点的压力系数小于InAs体材料的主要原因.同时计算结果表明,电子束缚能随压力变化对 不同尺寸量子点的压力系数的影响不同,量子点尺寸越小,受其影响越大,压力系数也越大 . 关键词: 量子点 压力系数 应变  相似文献   

11.
Accelerated fretting wear testing using ultrasonics   总被引:2,自引:0,他引:2  
The room temperature fretting wear characteristics of a stainless steel (AISI 304) have been studied using an ultrasonic frequency of vibration. In the work the influence of number of cycles, normal load and displacement amplitude on wear rate and wear mechanisms has been explored. It is found that ultraosnic fretting displays many of the characteristics of low frequency fretting described in literature, especially once steady state conditions have developed. The results are promising with respect to the application of ultrasonic fretting as a new technique for accelerated fretting wear testing.  相似文献   

12.
W. Dieterich  I. Peschel 《Physica A》1979,95(2):208-224
We investigate some of the dynamic properties of diffusing particles described by a many-body Smoluchowski equation. The dynamic structure factor is expressed in terms of a memory function which is evaluated in the cases of i) weak interaction and ii) low particle density, but arbitrary interaction. A one-dimensional system with a hard-core pair potential is treated explicitly. Furthermore, by including a periodic single-particle potential, a model is obtained which has relevance to superionic conductors. For this case we discuss how the frequency-dependent conductivity is affected by the correlated motion of particles.  相似文献   

13.
A method for separating the centre-of-mass motion of a two or more particle cluster is developed. This method works for an arbitrary central shell model potential. Only the internal motion wave function must be previously defined. Formulas are obtained for the case of clusters with arbitrary angular momenta of the internal motion and with constituent particles of unequal masses. The problem of separating the relative motion of a pair of particles with previously defined centre-of-mass motion is also solved. As a byproduct, is useful integral formula for generalized Talmi-Moshinsky coefficients is obtained. Some applications of the method are demonstrated in calculating the overlap interests to radioactive states, the form factors for direct x-transfer reactions and the two-parties interaction matrix elements.  相似文献   

14.
Long-range order (lro) is established with the help of a generalized Peierls argument for non-equilibrium lattice systems of one-dimensional (linear) interacting oscillators whose equation of motion (for a finite number of them) is the Smolouchowski equation for the density of a probability distribution. Interaction is mediated through the pair nearest-neighbor quadratic translation invariant potential. The initial density is Gibbsian with a potential energy satisfying the Ruelle superstability and regularity conditions.  相似文献   

15.
We study a model of Brownian particles which are pumped with energy by means of a non-linear friction function, for which different types are discussed. A suitable expression for a non-linear, velocity-dependent friction function is derived by considering an internal energy depot of the Brownian particles. In this case, the friction function describes the pumping of energy in the range of small velocities, while in the range of large velocities the known limit of dissipative friction is reached. In order to investigate the influence of additional energy supply, we discuss the velocity distribution function for different cases. Analytical solutions of the corresponding Fokker-Planck equation in 2d are presented and compared with computer simulations. Different to the case of passive Brownian motion, we find several new features of the dynamics, such as the formation of limit cycles in the four-dimensional phase-space, a large mean squared displacement which increases quadratically with the energy supply, or non-equilibrium velocity distributions with crater-like form. Further, we point to some generalizations and possible applications of the model. Received 24 November 1999  相似文献   

16.
The diffusion process in an external noise-activated non-equilibrium open system-reservoir coupling environment is studied by analytically solving the generalized Langevin equation. The dynamical property of the system near the barrier top is investigated in detail by numerically calculating the quantities such as mean diffusion path, invariance, barrier passing probability, and so on. It is found that, comparing with the unfavorable effect of internal fluctuations, the external noise activation is sometimes beneficial to the diffusion process. An optimal strength of external activation or correlation time of the internal fluctuation is expected for the diffusing particle to have a maximal probability to escape from the potential well.  相似文献   

17.
A novel material removal model as a function of abrasive particle size and concentration was established in chemical mechanical polishing (CMP) based on molecular scale mechanism, micro-contact mechanics and probability statistics. A close-form equation was firstly developed to calculate the number of effective particles. It found nonlinear dependences of removal rate on the particle size and concentration, being qualitatively agreement with the published experimental data. The nonlinear relation results from the couple relationship among abrasive number, slurry concentration and surface atoms’ binding energy with the particle size. Finally, the system parameters such as the operational conditions and materials properties were incorporated into the model as well.  相似文献   

18.
Transport properties under the influence of finite friction   总被引:2,自引:0,他引:2       下载免费PDF全文
展永  赵同军  于慧  宋艳丽 《中国物理》2002,11(6):624-628
Using the Langevin Monte Carlo method,the influence of friction on the directed motion of a Brownian particle driven by an external noise source is investigated.The results show that the exitence and change of the environment friction influence the establishment and development of the steady motion of a Brownian particle derived by nonequilibrium fluctuation.The most probable correlation time,which corresponds to the maximum current,is inversely proportional to the friction coefficient.The abnormal transition of the current with different friction appears because of the coupling between the effective ratchet potential and coloured noise intensity.  相似文献   

19.
《Physics letters. A》2020,384(28):126737
The chaotic diffusion for particles moving in a time dependent potential well is described by using two different procedures: (i) via direct evolution of the mapping describing the dynamics and; (ii) by the solution of the diffusion equation. The dynamic of the diffusing particles is made by the use of a two dimensional, nonlinear area preserving map for the variables energy and time. The phase space of the system is mixed containing both chaos, periodic regions and invariant spanning curves limiting the diffusion of the chaotic particles. The chaotic evolution for an ensemble of particles is treated as random particles motion and hence described by the diffusion equation. The boundary conditions impose that the particles can not cross the invariant spanning curves, serving as upper boundary for the diffusion, nor the lowest energy domain that is the energy the particles escape from the time moving potential well. The diffusion coefficient is determined via the equation of the mapping while the analytical solution of the diffusion equation gives the probability to find a given particle with a certain energy at a specific time. The momenta of the probability describe qualitatively the behavior of the average energy obtained by numerical simulation, which is investigated either as a function of the time as well as some of the control parameters of the problem.  相似文献   

20.
The validity of the application of the dissipative particle dynamics (DPD) method to ferromagnetic colloidal dispersions has been investigated by conducting DPD simulations for a two–dimensional system. First, the interaction between dissipative and magnetic particles has been idealized as some model potentials, and DPD simulations have been carried out using such model potentials for a two magnetic particle system. In these simulations, attention has been focused on the collision time for the two particles approaching each other and touching from an initially separated position, and such collision time has been evaluated for various cases of mass and diameter of dissipative particles and model parameters, which are included in defining the equation of motion of dissipative particles. Next, a multi–particle system of magnetic particles has been treated, and particle aggregates have been evaluated, together with the pair correlation function along an applied magnetic field direction. Such characteristics of aggregate structures have been compared with the results of Monte Carlo and Brownian dynamics simulations in order to clarify the validity of the application of the DPD method to particle dispersion systems. The present simulation results have clearly shown that DPD simulations with the model interaction potential presented here give rise to physically reasonable aggregate structures under circumstances of strong magnetic particle–particle interactions as well as a strong external magnetic field, since these aggregate structures are in good agreement with those of Monte Carlo and Brownian dynamics simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号