首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We study a new quantum heat engine (QHE), which is assisted by a Maxwell's demon. The QHE requires three steps: thermalization, quantum measurement, and quantum feedback controlled by the Maxwell demon. We derive the positive-work condition and operation efficiency of this composite QHE. Using controllable superconducting quantum circuits as an example, we show how to construct our QHE. The essential role of the demon is explicitly demonstrated in this macroscopic QHE.  相似文献   

2.
A beam of diatomic molecules scattered off a standing wave laser mode splits according to the rovibrational quantum state of the molecules. Our numerical calculation shows that single state resolution can be achieved by properly tuned, monochromatic light. The proposed scheme allows for selecting non-vibrating and non-rotating molecules from a thermal beam, implementing a laser Maxwell's demon to prepare a rovibrationally cold molecular ensemble. Received 23 August 2000 and Received in final form 17 November 2000  相似文献   

3.
郑仕标 《中国物理快报》2006,23(9):2356-2359
We describe a protocol for quantum state teleportation via mixed entangled pairs. With the help of an ancilla, near-perfect teleportation might be achieved. For pure entangled pairs, perfect teleportation might be achieved with a certain probability without using an ancilla. The protocol is generalized to teleportation of multiparticle states and quantum secret sharing.  相似文献   

4.
Remote quantum-state discrimination is a critical step for the implementation of quantum communication network and distributed quantum computation. We present a protocol for remotely implementing the unambiguous discrimination between nonorthogonal states using quantum entanglements, local operations, and classical communications. This protocol consists of a remote generalized measurement described by a positive operator valued measurement (POVM). We explicitly construct the required remote POVM. The remote POVM can be realized by performing a nonlocal controlled-rotation operation on two spatially separated qubits, one is an ancillary qubit and the other is the qubit which is encoded by two nonorthogonal states to be distinguished, and a conventional local Von Neumann orthogonal measurement on the ancilla. The particular pair of states that can be remotely and unambiguously distinguished is specified by the state of the ancilla. The probability of successful discrimination is not optimal for all admissible pairs. However, for some subset it can be very close to an optimal value in an ordinary local POVM.  相似文献   

5.
Shannon observed the relation between information entropy and Maxwell demon experiment to come up with information entropy formula. After that, Shannon's entropy formula is widely used to measure information leakage in imperative programs. But in the present work, our aim is to go in a reverse direction and try to find possible Maxwell's demon experimental setup for contemporary practical imperative programs in which variations of Shannon's entropy formula has been applied to measure the information leakage. To establish the relation between the second principle of thermodynamics and quantitative analysis of information leakage, present work models contemporary variations of imperative programs in terms of Maxwell's demon experimental setup. In the present work five contemporary variations of imperative program related to information quantification are identified. They are:(i) information leakage in imperative program,(ii) imperative multithreaded program,(iii) point to point leakage in the imperative program,(iv) imperative program with infinite observation,and(v) imperative program in the SOA-based environment. For these variations, minimal work required by an attacker to gain the secret is also calculated using historical Maxwell's demon experiment. To model the experimental setup of Maxwell's demon, non-interference security policy is used. In the present work, imperative programs with one-bit secret information have been considered to avoid the complexity. The findings of the present work from the history of physics can be utilized in many areas related to information flow of physical computing, nano-computing, quantum computing,biological computing, energy dissipation in computing, and computing power analysis.  相似文献   

6.
Xiang Chen 《中国物理 B》2022,31(3):30302-030302
Teleportation is a quantum information process without classical counterparts, in which the sender can disembodiedly transfer unknown quantum states to the receiver. In probabilistic teleportation through a partial entangled quantum channel, the transmission is exact (with fidelity 1), but may fail in a probability and the initial state is destroyed simultaneously. We propose a scheme for nondestructive probabilistic teleportation of high-dimensional quantum states. With the aid of an ancilla in the hands of the sender, the initial quantum information can be recovered when teleportation fails. The ancilla acts as a quantum apparatus to measure the sender's subsystem. Erasing the information recorded in it can resume the initial state.  相似文献   

7.
The uncertainty principle is a crucial aspect of quantum mechanics.It has been shown that the uncertainty principle can be tightened by quantum discord and classical correlation in the presence of quantum memory.We investigate the control of the entropic uncertainty and quantum discord in two two-level systems by an ancilla in dissipative environment.Our results show that the entropic uncertainty of an observed system can be reduced and the quantum discord between the observed system and the quantum memory system can be enhanced in the steady state of the system by adding an dissipative ancilla.Particularly,via preparing the state of the system to the highest excited state with hight fidelity,the entropic uncertainty can be reduced markedly and the quantum discord can be enhanced obviously.We explain these results using the definition of state fidelity.Furthermore,we present an effective strategy to further reduce the the entropic uncertainty and to enhance the the quantum discord via quantum-jump-based feedback control.Therefore,our results may be of importance in the context of quantum information technologies.  相似文献   

8.
We give a definition of an asymmetric universal entangling machine which entangles a system in an unknown state to a specially prepared ancilla. The machine produces a fixed state-independent amount of entanglement in exchange for a fixed degradation of the system state fidelity. We describe explicitly such a machine for any quantum system having d levels and prove its optimality. We show that a d 2-dimensional ancilla is sufficient for reaching optimality. The introduced machine is a generalization to a number of widely investigated universal quantum devices such as the symmetric and asymmetric quantum cloners, the symmetric and antisymmetric quantum entanglers, the quantum information distributor and the universal-NOT gate. The text was submitted by the authors in English.  相似文献   

9.
We investigate theoretically and experimentally how quantum state-detection efficiency is improved by the use of quantum information processing (QIP). Experimentally, we encode the state of one 9Be(+) ion qubit with one additional ancilla qubit. By measuring both qubits, we reduce the state-detection error in the presence of noise. The deviation from the theoretically allowed reduction is due to infidelities of the QIP operations. Applying this general scheme to more ancilla qubits suggests that error in the individual qubit measurements need not be a limit to scalable quantum computation.  相似文献   

10.
With a class of quantum heat engines which consists of two-energy-eigenstate systems undergoing, respectively, quantum adiabatic processes and energy exchanges with heat baths at different stages of a cycle, we are able to clarify some important aspects of the second law of thermodynamics. The quantum heat engines also offer a practical way, as an alternative to Szilard's engine, to physically realize Maxwell's demon. While respecting the second law on the average, they are also capable of extracting more work from the heat baths than is otherwise possible in thermal equilibrium.  相似文献   

11.
The security of a deterministic secure quantum communication using four-particle genuine entangled state and entanglement swapping [X.M. Xiu, H.K. Dong, L. Dong, Y.J. Cao, F. Chi, Opt. Commun. 282 (2009) 2457] is analyzed. It is shown that an eavesdropper can entangle an ancilla without introducing any error in the security test utilizing a speciality of the four-particle genuine entangled state. Moreover, the eavesdropper can distill a quarter of the secret information from her entangled ancilla. Finally, a simple improvement to resist this attack is proposed.  相似文献   

12.
A universal programmable detector is a device that can be tuned to perform any desired measurement on a given quantum system, by changing the state of an ancilla. With a finite dimension d for the ancilla only approximate universal programmability is possible, with size d=f(epsilon(-1)) increasing the function of the "accuracy" epsilon(-1). In this Letter we show that, much better than the exponential size known in the literature, one can achieve polynomial size. An explicit example with linear size is also presented. Finally, we show that for covariant measurements exact programmability is feasible.  相似文献   

13.
We present the design, fabrication, and characterization of a barrier-tunable superconducting quantum interference device(SQUID) qubit for the study of Maxwell's demon experiment. In this work, a compound Josephson junction(CJJ)radio-frequency(RF)-SQUID qubit with an overdamped resistively shunted direct-current(DC)-SQUID magnetometer is used to continuously monitor the state of the qubit. The circuit is successfully fabricated with the standard Nb/Al-Al Ox/Nb trilayer process of our laboratory and characterized in a low noise measurement system, which is capable of measuring coherent dynamics of superconducting qubits, in an Oxford dilution refrigerator. All circuit parameters are determined accurately by fitting experimental data to theoretical analysis and simulation, which allows us to make a quantitative comparison between the results of the experiment and theory.  相似文献   

14.
In this paper, we use three non-maximally GHZ states as the quantum channel and then propose two schemes to realize joint remotely preparing the general three-qubit state. For the first scheme, we show that the joint remotely state preparation (JRSP) can be successfully realized with a certain probability by performing information splitting, introducing an ancilla and proper measurement. Moreover, for the second scheme, we establish a new method to split information which needn’t to introduce the ancilla on the receiver’s side and can achieve better security.  相似文献   

15.
Quantum error correcting codes enable the information contained in a quantum state to be protected from decoherence due to external perturbations. Applied to NMR, this procedure does not alter normal relaxation, but rather converts the state of a 'data' spin into multiple quantum coherences involving additional ancilla spins. These multiple quantum coherences relax at differing rates, thus permitting the original state of the data to be approximately reconstructed by mixing them together in an appropriate fashion. This paper describes the operation of a simple, three-bit quantum code in the product operator formalism, and uses geometric algebra methods to obtain the error-corrected decay curve in the presence of arbitrary correlations in the external random fields. These predictions are confirmed in both the totally correlated and uncorrelated cases by liquid-state NMR experiments on 13C-labelled alanine, using gradient-diffusion methods to implement these idealized decoherence models. Quantum error correction in weakly polarized systems requires that the ancilla spins be prepared in a pseudo-pure state relative to the data spin, which entails a loss of signal that exceeds any potential gain through error correction. Nevertheless, this study shows that quantum coding can be used to validate theoretical decoherence mechanisms, and to provide detailed information on correlations in the underlying NMR relaxation dynamics.  相似文献   

16.
A three-party scheme for splitting an arbitrary unknown two-qutrit state is proposed, where two non-maximally-entangled three-qutrit states are taken as the quantum channel among three parties. With the sender's help, if and only if both receivers collaborate together, they can securely share the quantum state in a probabilistic way by introducing an ancilla qutrit and performing appropriate unitary operations. The relation between the success probability and coefficients characterizing the quantum channel is revealed. The security of the present scheme is analyzed and confirmed. Moreover, the generalization of the three-party scheme to more-party case is also sketched.  相似文献   

17.
The Szilard engine (SZE) is the quintessence of Maxwell's demon, which can extract the work from a heat bath by utilizing information. We present the first complete quantum analysis of the SZE, and derive an analytic expression of the quantum-mechanical work performed by a quantum SZE containing an arbitrary number of molecules, where it is crucial to regard the process of insertion or removal of a wall as a legitimate thermodynamic process. We find that more (less) work can be extracted from the bosonic (fermionic) SZE due to the indistinguishability of identical particles.  相似文献   

18.
How to concentrate non-maximally entangled states for quantum communication is a fundamental problem in quantum information. In this paper, we will apply generalized measurements to entanglement concentration of known non-maximally entangled pure states in arbitrary dimensional system. How to design the generalized measurements for the unambiguous discrimination of linearly independent non-orthogonal states is crucial for the concentration of the known non-maximally entangled states. The result shows that, any known non-maximally entangled pure state (for arbitrary dimensional system) can be transformed to the maximally entangled state only by introducing a qubit as ancilla and a joint unitary transformation operation on one of the entangled particles and the ancilla. In addition, because the less entangled state of each fail round will be re-concentrated too, the entanglement waste during the concentration process will be greatly reduced.  相似文献   

19.
A complete measurement of a quantum observable (POVM) is a measurement of the maximally refined version of the POVM. Complete measurements give information on multiplicities of measurement outcomes and can be used as state preparation procedures. Moreover, any observable can be measured completely. In this Letter, we show that a complete measurement breaks entanglement completely between the system, ancilla and their environment. Finally, consequences for the quantum Zeno effect and complete position measurements are discussed.  相似文献   

20.
Verification in quantum computations is crucial since quantum systems are extremely vulnerable to the environment.However,verifying directly the output of a quantum computation is difficult since we know that efficiently simulating a large-scale quantum computation on a classical computer is usually thought to be impossible.To overcome this difficulty,we propose a self-testing system for quantum computations,which can be used to verify if a quantum computation is performed correctly by itself.Our basic idea is using some extra ancilla qubits to test the output of the computation.We design two kinds of permutation circuits into the original quantum circuit:one is applied on the ancilla qubits whose output indicates the testing information,the other is applied on all qubits(including ancilla qubits) which is aiming to uniformly permute the positions of all qubits.We show that both permutation circuits are easy to achieve.By this way,we prove that any quantum computation has an efficient self-testing system.In the end,we also discuss the relation between our self-testing system and interactive proof systems,and show that the two systems are equivalent if the verifier is allowed to have some quantum capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号