首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
金巨广  王松岳等 《物理》1990,19(1):59-59,38
测量铀同位素的高分辨位移光谱,目前多采用原子束光谱法[1].该方法的分辨率和准确度高,但是设备复杂昂贵,操作复杂,特别是很难避免铀的高温腐蚀和放射性污染.近年来,美国 Los Alamos实验室的R.A.Keller等人[2]提出用光电流光谱法测量铀同位素位移光谱,并采用天然铀空心阴极灯测量了238U-235U的位移光谱.但是该方法由于同位素丰度相差悬殊,丰度高的同位素谱线强,丰度低的谱线弱,严重影响测量的灵敏度与准确度.特别是使用的单光路测量系统还不能测量零位移光谱. 本发明的目的,在于改进光电流光谱法单光路系统测量铀同位素仕移光谱受同位素…  相似文献   

2.
单昌功  王薇  刘诚  徐兴伟  孙友文  田园  刘文清 《物理学报》2017,66(22):220204-220204
长期监测大气中CO_2及其稳定同位素不仅可以获得CO_2源和汇信息,还可以确定不同排放源对大气中CO_2的贡献.傅里叶变换红外光谱技术是目前大气中痕量气体柱浓度高精度遥测的一种重要方法.本研究基于地基高分辨率傅里叶变换红外光谱仪采集的近红外太阳吸收光谱反演出大气中CO_2的稳定同位素~(13)CO_2和~(12)CO_2.在选择的~(13)CO_2的三个光谱窗口和~(12)CO_2的两个光谱窗口光谱拟合残差都很小,光谱拟合质量高.实验观测期间CO_2同位素~(13)CO_2和~(12)CO_2的反演误差平均值分别为(1.18±0.27)%和(0.89±0.25)%;利用Allan方差计算出观测系统的碳同位素比值δ~(13)C的测量精度为0.041‰.获得了2015年9月18日至2016年9月24日一年内大气中碳同位素比值δ~(13)C的长时间序列.结果表明,在整个测量期间δ~(13)C在-7.58‰--11.66‰范围内变化,平均值为(-9.5±0.57)‰;δ~(13)C有着明显的季节变化,冬季最小,夏季最大.分析了取暖导致的化石燃料燃烧排放增多是冬季大气中CO_2重同位素~(13)CO_2贫化的原因.观测结果显示了高分辨率傅里叶变换红外光谱仪具有准确和高精度观测大气中CO_2的稳定同位素和同位素比值δ~(13)C的能力.  相似文献   

3.
光谱技术的发展使得连续测量环境大气中的稳定同位素成为可能。描述了应用傅里叶变换红外(FTIR)光谱技术测量环境大气中稳定同位素的方法。为了验证该方法对环境大气中的稳定同位素进行连续测量的可行性,在七天的外场实验中,应用开放光程FTIR系统直接测量环境大气中CO2的稳定同位素12 CO2,13 CO2和H2O的稳定同位素H216 O和HD16 O,并得到大气中碳同位素比值δ13 C和氘同位素比值δD。对同位素比值δ13 C和δD,系统的测量精度分别约为1.08‰和1.32‰。采用Keeling图方法,在不同的时间尺度上对CO2和H2O的同位素数据进行分析,得到了水汽地表蒸散的氘同位素特征δET。外场实验的结果证明了开放光程FTIR系统长期测量环境大气中稳定同位素的潜力。  相似文献   

4.
应用于碳同位素丰度测量的激光频率刻度系统研究   总被引:1,自引:0,他引:1       下载免费PDF全文
李钦蕾  范凤英  熊纬佳  陈安滢  黎闫 《物理学报》2013,62(24):242801-242801
对应用于激光吸收光谱法碳同位素丰度测量中的激光频率实时刻度系统进行研究. 采用不同自由光谱范围的共焦法布里-珀罗干涉仪对测量过程中的激光扫描频率进行实时测量. 分别采用线性内插法和多项式拟合法对激光频率每次扫描过程中的频率非线性进行分析,通过对4976–4980 cm-1波段CO2吸收谱的多次测量平均的实验结果与HITRAN-2008数据库相应的吸收峰数据进行比较,得到两种方法的激光频率刻度精度均可达到10-4 cm-1,线性内插法的刻度精度要好于多项式拟合法. 验证了激光频率实时刻度系统在碳同位素丰度测量中应用的可行性. 关键词: 激光频率实时刻度 共焦法布里-珀罗干涉仪 同位素丰度测量 激光吸收光谱法  相似文献   

5.
腔增强吸收光谱技术作为一种高灵敏的痕量气体测量技术,其吸收光谱的浓度反演是极其关键的环节.为消除因吸收截面和仪器响应函数的不确定性引入的测量误差,本文提出了一种基于标准样品吸收光谱的浓度回归算法,该方法在浓度反演过程上进行优化,采用标准气体样品吸收光谱直接拟合未知浓度气体吸收光谱.采用中心波长在440 nm处的蓝色发光二极管(LED)作为光源,建立了一套非相干光腔增强吸收光谱技术(IBBCEAS)系统,实测腔镜反射率为99.915%,利用NO2气体的实测吸收光谱对该算法的有效性进行了验证.与常规吸收截面回归算法比较,结果表明本文提出的标准样品回归算法具有显著的优越性,测量精度提升约4倍.利用改进的算法结合标准样品配制的多个NO2气体对实验系统性能进行了深入评估,测量结果与理论值具有很好的一致性.Allan方差分析显示在积分时间为360 s的情况下,NO2检测限可达到5.3 ppb(1 ppb=10–9).  相似文献   

6.
李相贤  徐亮  高闽光  童晶晶  金岭  李胜  魏秀丽  冯明春 《物理学报》2013,62(18):180203-180203
改进了一种基于傅里叶变换红外光谱法测量CO2气体的装置, 改进后的装置能够提高CO2检测精度, 并能同时测量CO2碳同位素比值. 研究了温度和压力对CO2浓度值和CO2碳同位素比值测量的影响规律. 利用该装置连续测量了标准CO2气体和环境大气, 对标准CO2气体测量得到的CO2浓度值及其碳同位素比值进行温度和压力影响修正, 获得了较好的精度和准确度. 关键词: 光谱学 同位素比值 傅里叶变换红外光谱 二氧化碳  相似文献   

7.
基于二极管激光波长调制光谱技术建立了一套参数主动控制的痕量气体实时在线探测系统。为提高系统的实时在线测量性能和测量精度,在模拟温度与压强对痕量气体浓度探测影响的基础上,待测气体的温度、压强和流量被主动控制,并能保持长期稳定性。小波去噪和卡尔曼滤波数字降噪技术被联合应用于系统。以CO_2分子吸收为例的实验结果表明,小波去噪的应用将吸收光谱的信噪比提高了30%左右,卡尔曼滤波的应用将CO_2体积分数的测量精度由2.5×10~(-7)提高至7×10~(-8)。Allan方差结果给出了系统的稳定时间,约为60s。实测实验室内CO_2浓度的结果表明,该测量系统具有良好的稳定性和可靠性,能够很好地监测痕量气体浓度的变化。  相似文献   

8.
单个流体包裹体同位素在研究岩矿古流体成因、矿床、油气和大地构造演化动力学等多个领域具有十分重要的意义,激光拉曼光谱是一项可以分析单个流体包裹体同位素的有效方法。本文提出应用显微激光拉曼光谱法来计算CO_2气体碳同位素值δ~(13)C。利用自行设计的装置将~(12)CO_2和~(13)CO_2按比例分别与N2混合,对混合气体样品进行显微激光拉曼测试分析后确定~(12)CO_2和~(13)CO_2的拉曼参数,这为用激光拉曼分析碳同位素值δ~(13)C奠定了理论基础。通过对不同比例的~(12)CO_2/~(13)CO_2人工合成CO_2包裹体样品和胜利油田CO_2天然气藏样品进行激光拉曼光谱分析,发现CO_2气体碳同位素摩尔分数比N_(13)/N_(12)与拉曼参数之间存在数学关系式,由此建立了根据碳同位素计算公式δ~(13)C=[(C_(13)/C_(12))_(样品)/(C_(13)/C_(12))_(标准)-1]×1 000‰,用激光拉曼分析获得的CO_2气体有关激光拉曼参数来计算δ~(13)C值的方法。按照该方法,应用显微激光拉曼光谱对胜利油田CO_2天然气藏样品分析计算其δ~(13)C值为-5.318‰,与用质谱仪分析测出的δ~(13)C值(-5.6‰)比较,其相对误差较小(≈5%),可以初步建立起应用显微激光拉曼光谱测定CO_2气体碳同位素值δ~(13)C的定量方法。  相似文献   

9.
王贵师  易红明  蔡廷栋  汪磊  谈图  张为俊  高晓明 《物理学报》2012,61(12):120701-120701
利用石英音叉增强型光谱技术(QEPAS)结合基于Lab-VIEW设计的数字 频率锁定技术建立了一套气体实时探测系统, 该方案使用3f信号作为误差反馈信号, 将激光器锁定在待测气体吸收峰的中心位置, 保证了长时间测量的准确度并且提高了探测效率. 实验中采用中心波长位于1.396 μm的DFB半导体激光器作为光源, 选择常压下空气中的水汽作为研究对象, 对系统性能进行了测试, 并对影响影响系统探测灵敏度的主要因素进行了分析. 实验结果表明, 该系统可以将激光器稳定在± 0.001 cm-1范围内, 对激光器长时间工作时的波长漂移起到了很好的抑制作用, 系统的检测限约为1 ppm, 该方案可以直接应用于工业气监测、痕量污染物实时测量等领域.  相似文献   

10.
几乎所有小的气相分子(如H2O,CO2等)均具有独特的近红外吸收光谱,在负压条件下,每种微小的气相分子都拥有一对一的特征光谱线,基于这一原理人们开始使用激光光谱(IRIS)技术来准确分析气体样品中的同位素组成。该方法克服了传统同位素比质谱(isotope ratio mass spectrometry, IRMS)方法的局限性,已经成为公认的高精度、高灵敏度和高准确度的痕量气体检测方法。以大气水汽稳定同位素研究为例,大气水汽稳定同位素组成对水汽源区及其通道上的输送过程等水循环研究有着重要的指示意义。激光光谱技术使得大气水汽氢氧稳定同位素(δ18O和δD)野外原位连续高分辨率观测成为可能。但是,其观测精度和准确度受仪器运作特点、不同浓度大气水汽对特定光谱吸收性的敏感性差异等因素的影响,通常观测结果具有明显的非线性响应问题。因此,有必要对仪器观测过程中出现的各种偏差进行校正,但现阶段许多用户对新观测技术的国际校正方法尚不清楚。因此,基于波长扫描-光腔衰荡光谱(WS-CRDS)技术的大气水汽同位素观测系统(Picarro L2120-i),通过可调谐二极管激光器(Tunable Diode Laser, TDL)发射可被待测气体分子所吸收的不同波长的激光,测量不同波长下的衰荡时间(即有样品吸收的衰荡时间);TDL发射不能被待测气体吸收的不同波长的激光,测量每个波长下的衰荡时间(相当于无样品吸收的衰荡时间)。通过分析有无样品吸收的衰荡时间差,高精度计算待测气体的分子浓度,进而计算水汽稳定同位素组成。从记忆效应、漂移效应、浓度效应等方面,系统建立了一套准确可靠的大气水汽稳定同位素观测流程与校正方法,为正在使用或将要使用此类设备的研究人员提供参考,以获得高精度和高可靠性的大气水汽稳定同位素观测数据。  相似文献   

11.
大气中CO2主要的源和汇都集中在对流层,精确地获取对流层CO2浓度廓线分布,对研究CO2的垂直输送和全球气候演变具有重要意义。基于可调谐半导体激光吸收光谱(tunable diode laser absorption spectroscopy,TDLAS)高分辨、高灵敏度和快速响应等特点,研制了采用直接吸收技术的小型化CO2探测系统,选取位于2 004.02nm处的R(16),ν1+ν3吸收谱线,避免了附近H2O分子的吸收干扰,对CO2浓度廓线进行了球载测量,获取了10km以下对流层中CO2的分子数密度分布。受限于球载测量环境,系统采用紧凑型设计,在单块电路板上实现激光器驱动、弱信号调理,光谱数据采集及浓度计算等功能,受嵌入式微处理器的运算能力和硬件资源限制,对浓度反演算法进行了优化,避免冗余计算,降低了算法耗时。和采用波长调制技术的TDLAS传统仪器相比,借助光程20m的开放式Herriott多次反射池,采用直接吸收技术,避免了浓度标定步骤,提高了对测量环境的适应性,通用性的硬件和软件结构可适用于测量不同气体,只需更换激光器和调整算法关键参数。小型化的设计思想降低功耗,减小体积,兼顾了响应速度和测量精度,室温条件下功耗小于1.5 W,单板体积120mm×100mm×25mm,1.5s时间响应下的测量精度为±0.6×10-6,经验证,该系统可在对流层内实现CO215m垂直空间分辨的高精度检测,是一种可行的气体廓线球载探测手段。  相似文献   

12.
吸收光谱技术用于痕量气体浓度监测,特别是在气体分子稳定同位素丰度探测中,吸收谱线参数的准确性非常重要,目前普遍使用的HITRAN数据库中给出的各项参数具有一定的不确定性。为利用2.0 μm激光波段进行CO2浓度及其同位素丰度探测,需要对该波段的CO2吸收谱线参数进行校准,采用窄线宽分布反馈式二极管激光器作为光源,结合自行搭建的谱线参数测量系统,采集了2.0 μm波段10条CO2吸收谱线,获得了各谱线的位置、强度、自加宽系数和N2加宽系数,并与HITRAN2012数据库中相应的数据进行对比发现两者之间吻合较好,CO2谱线强度和自加宽系数相对偏差均小于2%。实测实验室大气的CO2浓度为440 ppm,13CO2的丰度值δ为-9‰。测量结果为该波段应用于CO2浓度及13CO2同位素丰度的实时在线探测提供了重要参考依据。  相似文献   

13.
刘豪  舒嵘  洪光烈  郑龙  葛烨  胡以华 《物理学报》2014,63(10):104214-104214
研制了一套接收硬目标回波的差分吸收激光雷达系统以用于全天候监测大气CO2浓度变化.系统采用10和12 kHz正弦波分别对处在CO2吸收峰内和吸收峰外的波长进行强度调制,利用单频检测技术提取回波信号.提出了一种利用激光扫频推算系统精度的方法,从而弥补了长期以来只能在理论上计算差分吸收激光雷达系统精度的不足,给实际系统自定标问题提供了一种解决方案.该系统采用全光纤结构,结构可靠,便于移动.利用此系统获得了上海市多天CO2浓度变化曲线,在450 m的积分路径长度上,1 s的积分时间取得了优于3.39×10-6的测量精度.  相似文献   

14.
同位素分馏效应是影响氢同位素丰度准确测定的主要因素。采用系统校正法和分子泵压缩比校正系数法可以较好地解决分馏效应对氢同位素丰度准确测定产生的影响。系统校正法是用标准样品的标称值对测量系统进行误差修正得到系统误差校正系数k,然后通过C校=kC样测,通过对标准样品的测量给出,校正系数k=C标/C标测,用系统校正法校正分析待测样品的丰度值,需要使用气体同位素标准,而分析不同丰度的氢同位素气体样品,需要使用相应丰度值的气体同位素标准。因此氢同位素标准气体的获取以及在储存过程中保持标称值不变是需要考虑的问题。  相似文献   

15.
在自旋交换光泵过程中,多种参数可能会影响到最终可获得的超极化气体氙-129核自旋极化度.通过低场(0.002 T)核磁共振(NMR)系统研究了连续流动工作模式的自旋交换光泵过程,当混合工作气体流量为0.3 SLPM和0.5 SLPM时,实验测量得到最佳光泵泡工作温度;对于同位素富集和自然丰度的氙-129气体,核自旋极化度的建立时间分别为15 min和22 min.由于混合工作气体的压力以及组分会导致铷原子吸收线的频移和展宽,并且影响到其线型,实验通过低场NMR系统测量确定了用于自旋交换光泵的最佳激光工作波长.低场NMR测量为获得具有高核自旋极化度的超极化气体氙-129,并且能够用于人体肺部MRI研究提供了实验依据.  相似文献   

16.
快速且准确地定量探测~(14)CO_2在许多领域都有着重要应用.超灵敏的光腔衰荡光谱技术是一种极具潜力的光学探测方法,但其存在灵敏度不足和易受其他CO_2同位素/杂质分子干扰的问题.本文提出利用阶梯型双共振光谱法将~(14)CO_2从基态激发至中间能级后,再用光腔衰荡光谱法去探测.双共振的吸收过程可以有效提高探测的选择性.本文分析了双共振吸收光谱的定量探测能力,模拟结果显示双共振光谱探测是无多普勒的,可以减少其他分子的吸收干扰,有望实现亚ppt水平的~(14)CO_2高选择性探测.  相似文献   

17.
超光谱大气CO_2监测仪光谱定标误差修正   总被引:1,自引:0,他引:1  
超光谱大气CO_2探测需对遥感器进行精确表征及定标,其中光谱定标工作最为基础。针对传统实验室定标方法获取的波长定标系数不确定度高等特点,开展基于气体吸收法原理的光谱定标误差修正研究,该方法与仪器使用状态一致,提高了定标系数实用性。首先利用辐射传输进行了理论光谱及误差因素模拟计算,并基于大气环境模拟定标仓开展了大气XO_2吸收光谱测量实验,最后采用LM算法进行光谱误差修正迭代优化。光谱定标误差修正结果表明:光谱偏差均值由修正前的0.03 cm~(-1)下降到修正后0.008 cm~(-1),且系统性与突变性误差得以剔除,大大提高了地面光谱定标精度,为后续温室气体反演奠定了基础。  相似文献   

18.
采用单参考与多参考耦合簇理论结合相关一致高斯基组计算研究了7~7Li_2~((0,±1))分子体系的电子基态的势能曲线,计算考虑了体系所有电子的关联效应与相对论效应,拟合得到了体系的光谱常数,并获得了电子基态的振动-转动能级信息.计算得到的中性与阳离子体系的光谱常数与实验值符合得很好;对于阴离子体系,平衡核间距的计算仍需进一步改进,其他光谱常数符合较好.计算结果表明,中性和阳离子体系基态波函数具有明显的单参考组态特点,而阴离子分子基态应采用多参考组态波函数描述.对于基态的振动-转动能级,与现有实验值符合得很好;尽管各种计算方法对阴离子基态的平衡核间距计算结果仍有差异,但振动能级间隔的结果相互符合得很好.本文的研究可为Li_2分子体系基态,尤其是光谱学信息很少的阴离子体系的电子结构与光谱的精确研究提供了有用的光谱信息.  相似文献   

19.
TDLAS气体浓度反演的状态空间方法   总被引:2,自引:1,他引:1  
 针对基于可调谐激光二极管吸收光谱技术(TDLAS)的气体浓度测量系统,建立了气体状态空间模型,并将卡尔曼滤波算法应用于TDLAS浓度反演中。实验表明卡尔曼滤波可以很好地消除测量噪声和模型误差对实验结果的影响,与最小二乘拟合的方法相比,在相同信噪比下反演精度可以提高1倍以上。  相似文献   

20.
王薇  刘文清  张天舒 《光学学报》2014,34(1):130003
傅里叶变换红外(FTIR)光谱技术可用来测量宽带红外光谱,能同时分析大气中的多种成分。描述了利用开放光路FTIR光谱技术测量环境大气中水汽的稳定同位素的新方法。以分析采集的中红外光谱为基础,在外场实验中,应用开放光程FTIR系统连续测量环境大气中水汽的稳定同位素H216 O和HD16 O,并得到大气中的氘同位素比值δD。对该测量系统,H216 O和HD16 O的测量误差分别约为0.25%和1.60%,氘同位素比值δD的测量精度约为1.32‰。详细分析了其中5天的数据,研究了环境大气中水汽的稳定同位素H216 O、HD16 O以及同位素比值δD随时间的变化规律。并采用Keeling图分析方法,研究了地表蒸散的氘同位素特征。外场实验的结果证明了所提的测量方法和开放光程FTIR系统相结合长期测量环境大气中稳定同位素的能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号