首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A diode-pumped doubly passively Q-switched intracavity-frequency-doubling Nd:LuVO4/KTP green laser with Cr4+:YAG and GaAs saturable absorbers is demonstrated. This laser can generate the shorter pulse width with higher peak power compared with the singly passively Q-switched green laser with Cr4+:YAG or GaAs saturable absorber. The relations between the pulse symmetry and the ratio of the small-signal transmissions of two saturable absorbers are investigated. By reasonably choosing the small-signal transmissions of both saturable absorbers, the doubly passively Q-switched green laser can generate the much more symmetric pulse profile. The coupled rate equations are used to simulate the passively Q-switched process of the green laser by considering the Gaussian transversal and longitudinal distributions of the intracavity photon density. The numerical results of the equations are consistent with the experimental results.  相似文献   

2.
By considering the Gaussian spatial distributions of the intracavity photon density and the initial population-inversion density, the coupled rate equations for a diode-pumped passively Q-switched and mode-locked (QML) laser with Cr4+:YAG saturable absorber are given. These coupled rate equations are solved numerically and the key parameters of an optimally coupled passively QML laser are determined for the first time. These key parameters include the parameters of the gain medium, the saturable absorber and the resonator, which can maximize the pulse energy of singly Q-switched envelope. The optimal calculations for a diode-pumped passively QML Nd:GdVO4 laser with Cr4+:YAG saturable absorber are presented to demonstrate the numerical simulation applicable.  相似文献   

3.
By considering the Gaussian spatial distributions of the intracavity photon density and the initial population-inversion density, the coupled rate equations for a diode-pumped passively Q-switched laser with V3+:YAG saturable absorber are given. These coupled rate equations are solved numerically and the key parameters of an optimally coupled passively Q-switched laser with V3+:YAG at 1342 nm are determined. These key parameters include the parameters of the gain medium, the saturable absorber and the resonator, which can maximize the pulse energy of singly Q-switched pulse. The optimal calculations for a diode-pumped passively Q-switched a-Nd:GdVO4 laser with V3+:YAG saturable absorber are presented to demonstrate the numerical simulation applicable.  相似文献   

4.
By taking into account the single-photon absorption (SPA) and two-photon absorption (TPA) processes of GaAs, the Gaussian spatial distributions of the intracavity photon density and the initial population-inversion density, and the pumping and the spontaneous emission during the pulse formation, the new normalized rate equations of a GaAs saturable absorber Q-switched laser are solved. The key parameters of an optimally coupled GaAs saturable absorber Q-switched laser are determined, including the optimal normalized coupling parameter and the optimal normalized GaAs saturable absorber parameters, which can maximize the pulse energy, and a group of general curves are generated for the first time, which clearly show the dependence of the optimal key parameters on the parameters of the gain medium, the GaAs saturable absorber, and the resonator. In addition, the influence including the space variation, the pumping and the spontaneous emission is also shown. Sample calculations for a diode-pumped Nd3+:YVO4 laser with a GaAs saturable absorber are presented to demonstrate the use of the curves and the relevant formulas.  相似文献   

5.
We present a simple technique to improve the symmetry of pulse emitted by doubly passively Q-switched lasers. Using both Cr4+:YAG and GaAs saturable absorbers in the same cavity, a diode-pumped doubly passively Q-switched Nd:YVO4 laser is realized for the fist time. This laser can generate more symmetric pulse with shorter pulse width and higher peak power compared with the solely passively Q-switched laser with Cr4+:YAG saturable absorber or GaAs coupler. The pulse symmetry factor ε of such a doubly passively Q-switched laser is experimentally shown to reach 1.05. Simulations by a rate-equation model for doubly passively Q-switched laser are in close agreement with the experimental results.PACS 42.55.Xi; 42.55.Rz; 42.60.Gd  相似文献   

6.
J. Ma  Y. Li  Y. Sun  H. Qi  R. Lan  X. Hou 《Laser Physics》2009,19(3):384-388
By considering both the transversal and longitudinal Gaussian spatial distribution of the intracavity photon density, a couple of rate equations describing a laser-diode end-pumped passively Q-switched Nd:GdVO4 laser with V3+:YAG saturable absorber have been proposed. Solving these space-dependent rate equations numerically, we obtain the dependences of pulse width, pulse repetition rate, single-pulse energy and peak power on pump power. In the experiment, a laser-diode end-pumped Nd:GdVO4 laser passively Q-switched by a V3+:YAG saturable absorber has been realized, and the experimental results are consistent with the theoretical calculations.  相似文献   

7.
By varying the positions of the saturable absorber in the laser axis and the pump beam waist in the gain medium, respectively, we have theoretically and experimentally studied the control of the pulse width in a diode-pumped passively Q-switched Nd:YVO4/KTP green laser with GaAs saturable absorber. A rate equation model is introduced, in which the intracavity photon density is assumed to be Gaussian spatial distribution, the longitudinal variation of the intracavity photon density and the pump beam spatial distribution are also considered. The experimental results are consistent with the numerical calculations of the rate equations.  相似文献   

8.
We theoretically and experimentally study different techniques to control the pulse width of a laser-diode-pumped passively Q-switched solid-state laser. It is shown that varying the laser beam radius in the saturable absorber and the pump beam radius in the gain medium provide an efficient means to control the pulse width. The experiments performed on a laser-diode-pumped Nd:YVO4 laser passively Q-switched by a Cr4+:YAG saturable absorber are consistent with the theoretical calculations obtained from the rate-equations model, in which the intracavity photon density is assumed to be Gaussian spatial distribution, and the longitudinal variation of the intracavity photon density and the pump beam spatial distribution are also considered.  相似文献   

9.
The intracavity photon density is assumed to be of Gaussian spatial distributions and its longitudinal variation is also considered in the rate equations for a laser diode(LD)end-pumped passively Q-switched Nd:YVO4 laser with GaAs saturable absorber.These space-dependent rate equations are solved numerically.The dependences of pulse width,pulse repetition rate,single-pulse energy,and peak power on incident pump power are obtained.In the experiment,the LD end-pumped passively Q-switched Nd:YVO4 laser with GaAs saturable absorber is realized and the experimental results are consistent with the numerical solutions.  相似文献   

10.
By simultaneously using both an acoustic-optic (AO) modulator and a Cr4+:YAG saturable absorber in the cavity, for the first time, a diode-pumped doubly Q-switched Nd:GdVO4 laser has been realized. The pulse duration is obviously compressed in contrast to the actively acoustic-optic Q-switched laser. By considering the Gaussian transversal distribution of the intracavity photon density and the longitudinal distribution of the photon density along the cavity axis as well as the influence of turnoff time of the acoustic-optic (AO) Q-switch, we provide the coupled rate equations for a diode-pumped doubly Q-switched Nd:GdVO4 laser with both an acoustic-optic (AO) modulator and a Cr4+:YAG saturable absorber. These coupled rate equations are solved numerically, and the dependence of pulse width, pulse energy and peak power on the incident pump power at different pulse repetition rates is obtained. The numerical solutions of equations agree well with the experimental results.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

11.
A compact diode-pumped passively Q-switched intracavity frequency-doubled Nd:GdVO4/KTP green-pulse laser was demonstrated, using Cr4+:YAG as a saturable absorber in a simple flat–flat cavity. With a 5.9 W incident pump power, a passively Q-switched green laser was obtained with an average power of 397 mW, repetition rate of 40 kHz, and pulse width of 40 ns, when the initial transmission of Cr4+:YAG was 85%. The shortest pulse width of 30 ns, the highest green peak power of 696 W and the maximum pulse energy of 21 μJ were obtained when the initial transmission of Cr4+:YAG was 70%. Under CW green operation, we obtained 440 mW output power.  相似文献   

12.
K. Yang  S. Zhao  G. Li  J. He 《Laser Physics》2008,18(6):725-728
Different techniques to control the pulse duration of a diode-pumped passively Q-switched intracavity frequency-doubled laser are studied, which shows that varying the pump beam radius in the gain medium and mode-spot sizes on a saturable absorber are two efficient ways to control the pulse duration. The output pulse durations obtained from a diode-pumped passively Q-switched Nd:GdVO4/KTP laser with a GaAs wafer can be controlled in a wide range over 100 ns, which indicates a simple way of controlling the pulse duration of the intracavity frequency-doubled passively Q-switched laser.  相似文献   

13.
A passively Q-switched intracavity optical parametric oscillator based on KTiOAsO4 (KTA) crystal is studied theoretically and experimentally. The rate-equation-based theoretical model is established to describe the time evolutions of the population inversion density of the laser crystal, ground-state population density of the saturable absorber, fundamental photon density, signal photon density and the idler photon density. In the experiment, a laser diode-end pumped, passively Q-switched Nd:YAG/KTA IOPO with a Cr4+:YAG crystal as the saturable absorber is realized to verify this model. The characteristics including the output power, the pulse repetition rate, the pulse width and the beam quality were investigated for this OPO. The experimental results for the output power and the repetition rate agree with the theory well. And both results show that with same pumping level the idler pulse width is shorter than the signal one.  相似文献   

14.
The key parameters of an optimally coupled doubly Q-switched laser are determined by maximizing the peak power. A group of general curves are generated by considering the single-photon absorption (SPA) and two-photon absorption (TPA) processes in the GaAs, along with the Gaussian spatial distributions of the intracavity photon density, the initial population-inversion density and the influence of the acousto-optic (AO) Q-switch. These results are compared with the results obtained when maximizing the output energy of the doubly Q-switched laser, and the differences between these approaches are discussed. Sample calculations for a laser-diode-pumped Nd3+:YVO4 laser with both an AO modulator and a GaAs saturable absorber are presented to demonstrate the use of the curves and the relevant formulas.  相似文献   

15.
By using both acousto-optic (AO) modulator and GaAs saturable absorber, a diode-pumped doubly Q-switched and mode-locked (QML) YVO4/Nd:YVO4 laser is presented. The average output power and the pulse width of the Q-switched envelope have been measured. The Q-switch pulse energy of the doubly QML laser are higher than that only with GaAs. The stability of the QML laser with the dual-loss-modulation is significantly improved if compared to that only with GaAs.The experimental results show that the doubly QML YVO4/Nd:YVO4 laser has nearly 80% modulation depth and deeper than that of the singly passively QML pulse. The doubly Q-switched mode-locked pulse inside the Q-switched envelope has a repetition rate of 111 MHz and its pulse width is estimated to be about 700 ps. By using a hyperbolic secant square function and considering the Gaussian distribution of the intracavity photon density, the coupled equations for diode-pumped dual-loss-modulated QML laser is given and the numerical solutions of the equations are in good agreement with the experimental results.  相似文献   

16.
The intracavity photon density and the initial population-inversion density in the diode-pumped passively Q-switched lasers are assumed to be Gaussian spatial distributions. The space-dependent rate equations are solved numerically. The key parameters of an optimally coupled passively Q-switched laser under Gaussian approximation are determined, and a group of general curves are generated for the first time. These key parameters include the optimal normalized coupling parameter and the optimal normalized saturable absorber parameter that maximize the peak power, and the corresponding normalized energy, normalized peak power, and normalized pulse width. The curves clearly show the dependence of the optimal key parameters on the parameters of the gain medium, the saturable absorber, and the resonator. In addition, the importance including the space variation is also shown. The optimal calculations for a diode-pumped passively Nd:YVO4 laser are presented to demonstrate the use of the curves and the related formulas.  相似文献   

17.
This work presents experimental results concerning a passively Q-switched intracavity frequencydoubled Nd:LuVO4/LBO green laser with a Cr4+:YAG saturable absorber operated at the wavelength of 0.53 μm. A maximal output power of 1.28 W was obtained at a pump power of 16.34 W, and peak power, pulse width as well as repetition frequency were 1.48 kW, 41 ns and 21 kHz, respectively.  相似文献   

18.
The intracavity photon density and the initial population-inversion density in the diode-pumped passively Q-switched lasers are assumed to be Gaussian spatial distributions. The space-dependent rate equations are solved numerically. The key parameters of an optimally coupled passively Q-switched laser under Gaussian approximation are determined, and a group of general curves are generated for the first time. These key parameters include the optimal normalized coupling parameter and the optimal normalized saturable absorber parameter that maximize the output energy, and the corresponding normalized energy, normalized peak power, and normalized pulse width. The curves clearly show the dependence of the optimal key parameters on the parameters of the gain medium, the saturable absorber, and the resonator. In addition, the importance including the space variation is also shown. The optimal calculations for a diode-pumped passively Nd: YVO4 laser are presented to demonstrate the use of the curves and the related formulas.  相似文献   

19.
G. Zhang  S. Zhao  Y. Li  G. Li  D. Li  K. Yang  T. Li  K. Cheng  H. Ge  Y. Zhang  Z. Yu 《Laser Physics》2010,20(6):1307-1311
A diode-pumped Q-switched and mode-locked (QML) Nd:LuVO4/KTP green laser with acousto-optic modulator (AOM) and Cr4+:YAG saturable absorber is presented. By inserting an AOM into the laser cavity, the stability of the QML green laser pulse with AO and Cr4+:YAG is improved, the modulation depth is increased and the pulse width of Q-switched pulse envelope is significantly compressed in comparison with that of the singly passively QML green laser with Cr4+:YAG. The experimental results show that the peak power of the doubly QML green laser pulse is much higher than that of the singly passively QML green laser pulse.  相似文献   

20.
We report on a diode-pumped passively mode-locked Nd:Gd0.64Y0.36VO4 laser with a Cr4+:YAG saturable absorber. Q-switched mode locking (QML) with 90% modulation depth was obtained. The peak power of the mode-locked pulse near the maximum of the Q-switched envelope was estimated to be about 1.7 MW at the pump power of 12 W. Besides QML, continuous-wave mode locking was also experimentally realized, for the first time to our knowledge, in the laser under a strong intracavity pulse energy fluence. The mode-locked pulse width is about 2.96 ps at a repetition rate of 161.3 MHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号