首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
A sensor head consisting of a photonic crystal fiber (PCF)-based Mach-Zehnder interferometer (MZI) and a fiber Bragg grating (FBG) is proposed and experimentally demonstrated for simultaneous measurement of curvature and temperature. The MZI fabricated by splicing a short length of PCF between two single-mode fibers with the air-hole structure that completely collapsed near the splicing points, is sensitive to fiber bending and surrounding temperature, while the FBG is only sensitive to the later. Simultaneous measurement of curvature and temperature is therefore obtained. Sensitivities of 4.06 nm/m− 1 and 6.30 pm/°C are achieved experimentally for curvature and temperature, respectively. And the corresponding resolutions are 5.2 × 10− 4 m− 1 and 1.25 °C for curvature and temperature, respectively, based on the wavelength measurement resolution of 10 pm.  相似文献   

2.
A temperature-independent highly-sensitive curvature sensor by using a tapered-photonic crystal fiber (PCF)-based Mach-Zehnder interferometer (MZI) is proposed and experimentally demonstrated. It is fabricated by sandwiching a tapered-PCF between two standard single mode fibers (SMFs) with the air holes of the PCF in the fusion splicing region being fully collapsed. The tapering of PCF is found to enhance the sensitivity significantly. Large curvature sensitivities of 2.81 dB/m−1 and 8.35 dB/m−1 are achieved in the measurement ranges of 0.36-0.87 m−1 and 0.87-1.34 m−1, respectively, with the resolution of 0.0012 m−1 being guaranteed. The proposed sensor also shows negligible temperature sensitivity less than 0.006 dB/°C.  相似文献   

3.
4.
A new type of curvature sensor comprises a stub of multi-mode fiber and an up-taper is proposed and demonstrated experimentally. The whole fabrication process is quite simple and the sensor head is cost effective. Measurement results show that it has a maximum curvature sensitivity of −61.877 nm/m−1 at 1.1718 m−1 (the highest value of reported papers among in-fiber Mach–Zehnder interferometers) and −9.2115 nm/m−1 from 0.865 m−1 to 1.1172 m−1. Temperature sensitivity of 89.01 pm/°C within the range of 20–80 °C has also been achieved, which implies the possibility for measurement of temperature.  相似文献   

5.
Long period gratings (LPGs) were written into a D-shaped optical fibre that has an elliptical core with a W-shaped refractive index profile and the first detailed investigation of such LPGs is presented. The LPGs’ attenuation bands were found to be sensitive to the polarisation of the interrogating light with a spectral separation of about 15 nm between the two orthogonal polarisation states. A finite element method was successfully used to model many of the behavioural features of the LPGs. In addition, two spectrally overlapping attenuation bands corresponding to orthogonal polarisation states were observed; modelling successfully reproduced this spectral feature. The spectral sensitivity of both orthogonal states was experimentally measured with respect to temperature and bending. These LPG devices produced blue and red wavelength shifts depending upon the orientation of the bend with measured maximum sensitivities of −3.56 and +6.51 nm m, suggesting that this type of fibre LPG may be useful as a shape/bend orientation sensor with reduced errors associated with polarisation dependence. The use of neighbouring bands to discriminate between temperature and bending was also demonstrated, leading to an overall curvature error of ±0.14 m−1 and an overall temperature error of ±0.3 °C with a maximum polarisation dependence error of ±8 × 10−2 m−1 for curvature and ±5 × 10−2 °C for temperature.  相似文献   

6.
Pressure and temperature are two important parameters in reservoir engineering. The fiber optic sensors can be used for permanent downhole monitoring. In this paper, we propose an extrinsic fiber Fabry-Perot interferometer (EFPI) sensor for pressure measurement with low sensitivity variation. The pressure sensitivity of EFPI sensor and of the fiber Bragg grating (FBG) sensors have been measured. The experimental pressure sensitivity for EFPI and FBG sensors are measured to be 2.75 × 10−8 1/kPa and 1.52 × 10−8 1/kPa, respectively. The temperature cross-sensitivity problem of the EFPI sensor has been solved by a new technique. The temperature sensitivity of EFPI sensor has been decreased to 1.2 × 10−6/°C, while the temperature sensitivity of non-compensated EFPI sensor has been measured to be 16.4 × 10−6/°C. The results show that the EFPI sensor has a higher pressure sensitivity and good capability to decrease temperature sensitivity in comparison to FBG sensor.  相似文献   

7.
An optical fiber curvature sensor based on a pressure-induced birefringence singlemode fiber loop mirror is presented. The birefringer SMF is made by applying a transverse force against a short length of singlemode fiber. The length of the sensing element for the curvature sensing is about 150 mm. The sensitivity of the curvature measurement experimentally is 0.0263 m−1/pm. And the temperature effect of the proposed sensor is also analyzed. Comparing with the sensor of photonic crystal fiber, it is more convenient and simply.  相似文献   

8.
An optical fiber curvature sensor with low-birefringence photonic crystal fiber (PCF) based Sagnac loop is demonstrated experimentally. The low-birefringence PCF of about 40 cm long is inserted into Sagnac loop, and a section of it about 155 mm is used as the sensing element. The Sagnac output spectra under different curvatures are measured and analyzed. The results show that the wavelength shift of the transmission dip has a linear relationship with the curvature. The sensitivity of the curvature measurement of − 0.337 nm is achieved in the range of 0-9.92 m− 1. And the temperature effect of the proposed sensor is also analyzed.  相似文献   

9.
A novel curvature sensor based on optical fiber Mach–Zehnder interferometer (MZI) is demonstrated. It consists of two spherical-shape structures and a long-period grating (LPG) in between. The experimental results show that the shift of the dip wavelength is almost linearly proportional to the change of curvature, and the curvature sensitivity are −22.144 nm/m−1 in the measurement range of 5.33–6.93 m−1, −28.225 nm/m−1 in the range of 6.93–8.43 m and −15.68 nm/m−1 in the range of 8.43–9.43 m−1, respectively. And the maximum curvature error caused by temperature is only −0.003 m−1/°C. The sensor exhibits the advantages of all-fiber structure, high mechanical strength, high curvature sensitivity and large measurement scales.  相似文献   

10.
In this paper, extensive experimental results on broad-band double cladding Er3+-Yb3+ co-doped superfluorescent fiber sources (SFSs), characterizing their output power, mean wavelength, and bandwidth (BW) stability with variations of pump power, pump wavelength, and fiber temperature, have been reported. For a 55-cm fiber, SFS power from 3.7755 (maximum BW condition of more than 80 nm) to 9.1837 mW (maximum power condition, BW is about 34 nm) has been achieved. The SFS mean wavelength dependence on pump wavelength is highly pump temperature sensitive, and can be reduced to zero in a chosen pump temperature field. The intrinsic variation of the SFS mean wavelength λm with fiber temperature is also measured, and a linear variation from 15 to 45 °C with a slop of −0.053 nm/°C for Lf = 100 cm and −0.04 nm/°C for Lf = 55 cm is found.  相似文献   

11.
An optical fiber curvature sensor based on interference between LP01–LP02 modes of a circularly symmetric few mode fiber (FMF) is presented. The device consists of two single-mode fiber and a 10-cm FMF. The two single-mode fiber is offset-spliced to each end of the FMF. When the optical fiber is kept straight and fixed, the interference pattern appears in the transmitted spectrum. As the fiber device is bent, the visibility of the interference fringes (at 1530 nm) decreases, reaching values close to 0.3. The dynamic range of the device can be tailored by the proper selection of the length of FMF. The relationship between the fringe visibility and the curvature is linear while the curvature is between 11 m−1 and 16 m−1. The result indicates that the compact sensor can be used in the measurement of large curvature, which is also important in structural health monitoring.  相似文献   

12.
An optical receiver with high sensitivity and linearity specially designed for Giga-bit communications over small-bandwidth high-attenuation multimode plastic optical fiber is presented. An automatic gain control transimpedance amplifier and linear post amplifiers are used to maintain a good performance with multilevel modulation. Using multilevel signaling and large-diameter integrated photodiodes make the presented optical receiver suitable for large core plastic optical fiber. For a wavelength of 675 nm, a sensitivity of −26.3 dB m (BER = 10−9) at 500 Mb/s is presented by a binary signal. A data rate of 1 Gb/s and a sensitivity of −19.8 dB m (BER = 10−9) are achieved with four-level pulse amplitude modulation.  相似文献   

13.
A novel bend-insensitive long-period fiber grating (LPFG) sensor written using focused CO2 laser pulses is demonstrated, for the first time, to our knowledge. It is found that the central wavelength shift of such a LPFG is only −0.018 nm even for a curvature of 1.1 m−1 at the most bend-insensitive position of the LPFG. Experimental results show that the bend sensitivity of the central wavelength of the LPFG has a periodic distribution along its circular directions. Such a bend-insensitive sensor could be used to solve the problem of cross-sensitivity between bend and other measurands, such as temperature, strain or refractive index, which is an unsolved problem for LPFG sensors in practice. In addition, the bend sensitivity of the LPFG can be adjusted by selecting its circular positions.  相似文献   

14.
A Sagnac interferometer with a long-period fiber grating (LPG) inscribed in the polarization-maintaining fiber (PMF) is proposed and experimentally demonstrated for simultaneous measurement of strain and temperature. Due to the different responses of the LPG and the Sagnac interferometer to strain and temperature, simultaneous measurement can be achieved by monitoring the wavelength shifts and the intensity changes of a resonance dip of the sensor setup. The experimental results show that the achieved sensitivities to strain and temperature are 6.4 × 10− 3 dB/με and 0.65 nm/°C, respectively.  相似文献   

15.
We present in this paper a wavelength-encoded fiber-optic temperature sensor with ultra-high sensitivity. The sensor consists of a segment of multimode fiber (MMF) with a polymer cladding spliced between two single mode fibers, forming a multimode fiber interferometer. For a temperature sensor with a 55 mm long MMF and a 45 mm long polymer cladding, a temperature sensitivity of −3.195 nm/°C has been achieved over a temperature range of 10 °C which is mainly limited by the spectral range of the light source used in the experiments. It has been found that the high temperature sensitivity is mainly attributed to the high thermo-optic coefficient of the polymer cladding. Other advantages of the temperature sensor reported here include its extremely simple structure and fabrication process, and hence a very low cost.  相似文献   

16.
A high sensitive and compact refractive index sensor based on slotted photonic crystal waveguide (S-PhCW) is demonstrated. This design is worked on a Mach–Zehnder interferometer (MZI) configuration with S-PhCW as the measuring arm, which can be used to detect any changes in refractive index that correspond to different concentration of the measuring liquid. Combining the slow light enhancement in photonic crystal waveguide (PhCW) with the advantage of excellent optical confinement in slot waveguide, the sensitivity of this simple scheme can reach to 2.3 × 109 nm/RIU with the active region of only 1 mm long.  相似文献   

17.
Size-controlled Mn0.67Zn0.33Fe2O4 nanoparticles in the wide range from 80 to 20 nm have been synthesized, for the first time, using the oxidation method. It has been demonstrated that the particle size can be tailor-made by varying the concentration of the oxidant. The magnetization of the 80 nm particles was 49 A m2 kg−1 compared to 34 A m2 kg−1 for the 20 nm particles. The Curie temperatures for all the samples are found to be within 630±5 K suggesting that there is no size-dependent cation distribution. The critical particle size for the superparamagnetic limit is found to be about 25 nm. The effective magnetic anisotropy constant is experimentally determined to be 7.78 kJ m−3 for the 25 nm particles, which is about an order of magnitude higher than that of the bulk ferrite.  相似文献   

18.
We report on a highly birefringent holey fiber for broadband dispersion compensation covering the S, C, and L telecommunication bands i.e. wavelength ranging from 1460 to 1625 nm. The finite element method with circular perfectly matched layer boundary condition is used to investigate the guiding properties. Numerical analysis demonstrates that it is possible to obtain negative dispersion coefficient of about −470 to −850 ps/nm/km over S to L-bands and a relative dispersion slope perfectly matched with single mode fiber (SMF) of about 0.0036 nm−1 at 1550 nm. At the same time birefringence of the order 2.53 × 10−2 is realized at 1550 nm wavelength. Owing to superior optical properties of the proposed holey fiber, this can be a promising candidate for broadband dispersion compensation and sensing applications.  相似文献   

19.
An intensity curvature sensor using a Photonic Crystal Fiber (PCF) with three coupled cores is proposed. The three cores were aligned and there was an air hole between each two consecutive cores. The fiber had a low air filling fraction, which means that the cores remain coupled in the wavelength region studied. Due to this coupling, interference is obtained in the fiber output even if just a single core is illuminated. A configuration using reflection interrogation, which used a section fiber with 0.13 m as the sensing head, was characterized for curvature sensing. When the fiber is bended along the plane of the cores, one of the lateral cores will be stretched and the other compressed. This changes the coupling coefficient between the three cores, changing the output optical power intensity. The sensitivity of the sensing head was strongly dependent on the direction of bending, having its maximum when the bending direction was along the plane of the cores. A maximum curvature sensitivity of 2.0 dB/m−1 was demonstrated between 0 m and 2.8 m.  相似文献   

20.
In this paper, we present a photonic crystal fiber based on hexagonal structure for improved negative dispersion as well as high birefringence in the telecom wavelength bands. It is demonstrated that it is possible to obtain negative dispersion coefficient of −712 ps/(nm km) and relative dispersion slope (RDS) perfectly match to that of single mode fiber (SMF) of about 0.0036 nm−1 at the operating wavelength 1550 nm. The proposed fiber exhibits high birefringence of the order 2.11 × 10−2 with nonlinear coefficient about 57.57 W−1 km−1 at 1550 nm. Moreover, it is confirmed that the designed fiber successfully operates as a single mode in the entire band of interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号