首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By cascading the long period fiber grating (LPFG) and fiber Bragg grating (FBG) in grapefruit microstructured fiber, a novel dual-period fiber grating sensor is proposed. The refractive index and temperature are measured simultaneously by using the different sensitivity of FBG and LPFG. The relationship between dual-period fiber grating transmission spectrum and refractive index, resonant wavelengths and temperature are analyzed theoretically, respectively. The simulation results show that the accuracy of the sensor in measuring refractive index and temperature is estimated to be 2319.6 nm/RIU in a range from 1.33 to 1.36 and 0.017 nm/°C from 0 °C to 100 °C, respectively. Thus, the sensor has high refractive index sensitivity, and can provide the theoretical foundation for the optical fiber biosensor.  相似文献   

2.
A fiber temperature sensor with high sensitivity based on a Michelson interferometer is realized by fusion-splicing a peanut-shape structure in single-mode fiber (SMF). The theory and experimental results show that the peanut-shape structure can couple the light energy of the core mode into the cladding and re-couple the light in the cladding into the core. A high-quality interference spectrum with a fringe visibility of about 18 dB is observed. Experimental demonstration shows that the device can be heated up to 900 °C with a sensitivity of about ∼0.096 nm/°C. The device has the advantages of low-cost, high sensitivity and easy fabrication, which makes it attractive for sensing applications.  相似文献   

3.
基于Michelson干涉仪的高灵敏度光纤高温探针传感器   总被引:2,自引:0,他引:2       下载免费PDF全文
提出了一种简单的高灵敏度的光纤高温探针传感器, 该传感器由一小段多模光纤和一端镀有银膜的单模光纤熔接而成. 由于单模光纤和多模光纤的纤芯直径不同, 当光波从多模光纤传输至多模光纤和单模光纤的熔接端面时, 一部分纤芯光耦合进包层, 因为单模光纤纤芯的折射率和包层的折射率不同, 不同模式的光经过银膜反射后在多模光纤内重新耦合进单模光纤, 最终形成干涉.随着外界温度的升高, 干涉谱峰值会向长波方向漂移. 实验结果证明这种传感器在470 ℃–600 ℃范围内具有很好的稳定性, 线性度达99.7%, 灵敏度为120 pm/℃, 可作为远距离反射型探针温度传感器, 在石油探测和油气田开发等领域有着广泛的应用前景. 关键词: 光纤传感 温度测量 Michelson干涉  相似文献   

4.
Temperature effects on the various cladding modes of a long-period grating (LPG) fabricated in B-Ge co-doped fibre have been investigated to create a high sensitivity measurement device. The temperature sensitivities of the attenuation bands of the LPG over the wavelength region 1.2-2.2 μm, for a grating with a 330 μm period, were obtained by monitoring the wavelength shift of each attenuation band, with a temperature increment of 20 °C, over the range from 23 °C to 140 °C. The attenuation band appearing over the 1.8-2.0 μm wavelength range has shown a nearly five times higher temperature sensitivity than that of lower order modes, and thus it shows significant promise for fibre optic temperature sensor applications.  相似文献   

5.
A new type fiber bending sensor based on a tilted fiber Bragg grating (TFBG) interacting with a multimode fiber (MMF) is presented. The sensing head is formed by insertion of a small section of MMF between a single-mode fiber (SMF) and the TFBG. The average reflective power in the cladding modes decreases with the increase of curvature. The measurement range of the curvature from 0 to 2.5 m−1 with a measurement sensitivity of −802.4 nW/m−1 is achieved. The proposed sensor is also proved as temperature-independent from the experimental investigation.  相似文献   

6.
An alternative all-fiber sensor for simultaneous strain and temperature measurement based on a photonic crystal fiber (PCF) spliced between single-mode fibers cascaded with a long period grating (LPG) is proposed. By collapsing the air holes at two splicing regions along the PCF, a simple but effective modal-interference (MI) is occurred between the core and cladding modes of the PCF. Due to the different responses on the changes of strain and temperature on the MI and the cascaded LPG, the strain and temperature can be measured simultaneously. Experimental results show that the sensing resolution of 9.1 με in strain measurement is experimentally achieved over a range of 2640 με, while the temperature sensing resolution is 0.27 °C within a range of 30-100 °C.  相似文献   

7.
Pressure and temperature are two important parameters in reservoir engineering. The fiber optic sensors can be used for permanent downhole monitoring. In this paper, we propose an extrinsic fiber Fabry-Perot interferometer (EFPI) sensor for pressure measurement with low sensitivity variation. The pressure sensitivity of EFPI sensor and of the fiber Bragg grating (FBG) sensors have been measured. The experimental pressure sensitivity for EFPI and FBG sensors are measured to be 2.75 × 10−8 1/kPa and 1.52 × 10−8 1/kPa, respectively. The temperature cross-sensitivity problem of the EFPI sensor has been solved by a new technique. The temperature sensitivity of EFPI sensor has been decreased to 1.2 × 10−6/°C, while the temperature sensitivity of non-compensated EFPI sensor has been measured to be 16.4 × 10−6/°C. The results show that the EFPI sensor has a higher pressure sensitivity and good capability to decrease temperature sensitivity in comparison to FBG sensor.  相似文献   

8.
We present a new fiber-optic refractive-index sensor based on a fiber modal interferometer constituted by a thin-core optical fiber, whose cut-off wavelength is around three times shorter than normal single-mode fiber. In such a core diameter mismatching structure, the high-order cladding modes are efficiently excited and interfere with the core mode to form a high extinction-ratio filter (>30 dB). Both transmissive and reflective thin-core fiber modal interferometers are experimentally demonstrated, and show a high sensitivity to a small change of external refractive-index (>100 nm/R.I.U.), but a low sensitivity to the change of temperature (<0.015 nm/°C). Such a fiber device possesses an extremely simple structure, but excellent refractive-index sensing properties, and thus is an ideal candidate for fiber-optic biochemical sensing applications.  相似文献   

9.
An approach to optimize the design of the long-period grating pair as a temperature sensor device is presented, implemented by using a long-period grating (LPG) pair with a small separation (of around 2 mm) and scaling down their physical length by a factor greater than 2. The technique allows the interferometer formed not only to measure temperature variations over distances as small as the overall length of the grating pair (18 mm) but also to reduce the cladding losses between the LPGs forming the pair. This approach enhances the sharpness of the interference fringes (IFs) and the pits (Pts) in the transmission spectrum and, as a result, a high resolution sensor is obtained. The LPG pair is fabricated in the appropriate photosensitive single mode/core fibres, without being restricted to the use of dual core or other special fibres, thus exploiting the sensitivities of various fibres and reducing the overall system cost. In this work, the effectiveness of this technique is demonstrated by fabricating a small-scale LPG pair in a boron-germanium co-doped single mode fibre, with particular attention being paid to the higher order cladding modes. The sensitivity of the device thus created is 0.31 nm/°C with a root-mean-square (rms) deviation of 0.28 nm in the wavelength measurement, which corresponds to a temperature variation of approximately 0.9 °C. This was achieved while using a relatively low-resolution (0.6 nm) Optical Spectrum Analyzer to detect the wavelength changes of the device and was further improved to 0.7 °C when using an OSA with a resolution of 0.1 nm.  相似文献   

10.
Progress in developing a new measurement method for ultrasound output power is described. It is a thermal-based technique with the acoustic power generated by a transducer being absorbed within a specially developed polyurethane rubber material, whose high absorption coefficient ensures energy deposition within a few mm of the ultrasonic wave entering the material. The rate of change of temperature at the absorber surface is monitored using the pyroelectric voltage generated from electrodes disposed either side of a 60 mm diameter, 0.061 mm thick membrane of the piezoelectric polymer polyvinylidene fluoride (pvdf) bonded to the absorber. The change in the pyroelectric output voltage generated by the sensor when the transducer is switched ON and OFF is proportional to the delivered ultrasound power. The sensitivity of the device is defined as the magnitude of these switch voltages to a unit input stimulus of power (watt). Three important aspects of the performance of the pyroelectric sensor have been studied. Firstly, measurements have revealed that the temperature dependent sensitivity increases over the range from approximately 20 °C to 30 °C at a rate of +1.6% °C−1. Studies point to the key role that the properties of both the absorbing backing layer and pvdf membrane play in controlling the sensor response. Secondly, the high sensitivity of the technique has been demonstrated using an NPL Pulsed Checksource, a 3.5 MHz focused transducer delivering a nominal acoustic power level of 4 mW. Finally, proof-of-concept of a new type of acoustic sensor responding to time-averaged intensity has been demonstrated, through fabrication of an absorber-backed hydrophone of nominal active element diameter 0.4 mm. A preliminary study using such a device to resolve the spatial distribution of acoustic intensity within plane-piston and focused 3.5 MHz acoustic fields has been completed. Derived beam profiles are compared to conventional techniques that depend on deriving intensity from acoustic pressure measurements made using the sensor as a calibrated hydrophone.  相似文献   

11.
The performance of long period fiber grating (LPFG) sensors written in single cladding and double cladding fibers have been compared by using a fast responding interrogation system based on intensity modulation. Temperature and dynamic strain monitoring using this system have been demonstrated. This system is capable of resolving strain to 0.2 and 0.4 με at a loading frequency of 20 Hz, and temperature resolution to 0.02 and 0.19 °C by using LPFG in the single cladding (SC-LPFG) and double cladding (DC-LPFG), respectively.  相似文献   

12.
A type of compact temperature sensor based on microfiber knot resonator is proposed and demonstrated experimentally. The microfiber knot, which is assembled by two fiber probes, is placed on a plate glass substrate and coated with low-index polymer to keep the system robust. Sensitivities of this kind of temperature sensor as 0.27 nm/°C in heating process (when temperature ranges from 28 to 140 °C) and −0.28 nm/°C in cooling process (when temperature ranges from 135 to 25 °C) are obtained. Temperature resolution of 0.5 °C is demonstrated and higher resolution is predicted with a high-resolution spectrometer.  相似文献   

13.
We propose and demonstrate strain and temperature discrimination technique using a single fiber Bragg grating (FBG) written in the core of an erbium doped fiber. We observed that amplified spontaneous emission power varying linearly from the erbium doped fiber with temperature which determines temperature changes and strain is estimated by subtracting the wavelength shift due to temperature change, from the measured shift corresponding to the dip in the transmission spectrum of the FBG. A simple and compact FBG sensor is presented with improved rms errors of 21.2 μ? and 1 °C over ranges of 0–800 μ? and 40–95 °C, respectively. The sensor is shown to have strain and temperature sensitivity of 0.8 pm/μ? and 12 pm/°C.  相似文献   

14.
A sensor has been fabricated by the integration of a fiber Bragg gating sensor (FBGs) with a fiber Fabry-Perot (F-P) sensor fabricated by etching method. In the integrated sensor, the FBG was used to measure temperature, while the fiber Fabry-Perot interferometer sensor (FFPIs) was used for strain measurement. Wavelength decoding for FBG and peak tracking for FFPI was employed for demodulation, respectively. The result showed that the temperature and strain sensitivity for the integrated sensor is ~ 2.7 pm/μεand ~ 9.3 pm/°C, respectively.  相似文献   

15.
A new sensor for simultaneous measurement of humidity and temperature is proposed. The sensor consists of Fabry–Perot cavity formed by two identical uniform fiber Bragg gratings. To make the cavity serves as humidity sensor, moisture sensitive polymer, which is polyimide, is coated on the FBG and on the cavity with different thickness. When the sensor is exposed to the relative humidity change, the polyimide will expand and stretch the fiber and induces strain on the FBG and on the cavity. The induced strain alters the grating period, cavity length and effective refractive index of fiber. The simulation results show that the humidity sensitivity and thermal sensitivity are 1.92 pm/%RH and 8.87 pm/°C, respectively, for polyimide coating thickness of 10 μm on the FBG and 15 μm on the cavity.  相似文献   

16.
We present an all-fiber sensor for simultaneous measurement of temperature and strain. The sensing head is formed by introducing a fiber Bragg grating into a high-birefringence fiber loop mirror that acts as a Mach-Zehnder interferometer for temperature and strain discrimination. A sensing resolution of ±1 °C in temperature and ±21 με in strain has been experimentally achieved over a temperature range of 60 °C and strain range of 600 με.  相似文献   

17.
We propose a novel Fabry-Perot optical fiber tip sensor for high temperature measurement. The sensor consists of a short section of a special all-silica photonic crystal fiber spliced at one end to a silica single-mode fiber. Because of its all-silica structure, the sensor allows linear and stable measurements of temperature up to 1200 °C with a high sensitivity. The sensor is easy and inexpensive to fabricate and could find wide applications in mechanics, aeronautics, and metallurgy.  相似文献   

18.
Single mode polymer optical fibers (smPOFs) can be applied for measuring large strains in numerous applications, such as civil engineering infrastructure assessment and health monitoring. Because of the large light attenuation of solid smPOFs, small lengths of the fiber would need to be coupled to silica optical fibers (SOFs) for practical applications of the smPOF as a strain sensor. This coupling requires smooth cleaving of the smPOFs. In this work, several cleaving techniques previously demonstrated to provide smooth cross-sections of multimode POFs were applied to the smPOF. From these techniques, hot-knife cutting was determined to be a feasible method for cleaving when the blade was heated to 80 °C and the smPOF heated in the range of 30 °C to 40 °C. In addition, focused ion beam machining which produces high-precision cleaves of the solid smPOF cross-section, was performed to set a bench mark and thus evaluate the quality of cleaving from other methods used in this study.  相似文献   

19.
A novel relative humidity (RH) sensor based on single-mode–multimode–single-mode (SMS) fiber structure is presented. The sensors are created through coating a thin layer of polyvinyl alcohol (PVA) on the multimode fiber deleted the cladding trough HF solution cauterization as the sensitive cladding film, whose refractive index varies as a function of humidity level. Due to the SMS fiber structure's sensitivity to ambient refractive index, the transmission spectra of SMS fiber structure coated PVA film are modified under exposure to different ambient humidity levels ranging from 30% to 80% RH. The related numerical simulations of transmission spectra of SMS fiber structure with different surrounding refractive index are also proposed. The sensitive of the RH measurement of 0.09 nm/% RH in the range from 30% to 80% RH is experimentally achieved. Meanwhile the intensity of wavelength at 1543 nm is decreasing as the humidity increasing. The experimental results obtained are consistent with the conclusion obtained by numerical simulating.  相似文献   

20.
The thermal effects on pigtailed 22-nm-thick, 5-μm-wide and 1-cm-long Au stripe long-range surface plasmon polariton (LRSPP) waveguides, embedded in polymer/polymer layers and in polymer/silica layers, are theoretically and experimentally demonstrated. The polymer and silica cladding layers have thermo-optic coefficients of opposite signs. As the temperature varies the Au stripe LRSPP waveguide embedded in the polymer/polymer layers retains its symmetry in the refractive index, but that embedded in the polymer/silica layers becomes asymmetric in the refractive index. The thermal sensitivity in the optical output power of the symmetric structure is smaller than 0.02 dB/°C but the sensitivity of the asymmetric structure is ∼ 0.3 dB/°C. These structures open up potential applications of the LRSPP waveguides for temperature independent/dependent photonic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号