首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
ABSTRACT

The average magnetic moment per atom of Mn13 cluster is expected to be enhanced by doping or coating with a shell. Several ternary core–shell icosahedral clusters TM@Mn12@Au20 were constructed by combining substituting the central Mn with VIII elements (Fe, Co, Ni, Ru, Rh, Pd and Pt) and coating with a icosahedral Au20 shell, and systematically studied by using the first-principles density functional method. Compared to Mn13, Fe@Mn12@Au20 cluster shows a giant enhancement on total magnetic moment (52?µB) which can be greatly attributed to the ferromagnetic coupling between spin moments of atoms. Coating with Au20 shell enlarged the average distances of TM-Mn and Mn-Mn and is a useful way to change the magnetic coupling style. By analysis of density of states and electron localisation functional, we can conclude that the weak hybridisation between Fe and Mn in Fe@Mn12@Au20 is propitious to maintain their original direction of spin moments of atoms and then form ferromagnetic coupling.  相似文献   

2.
张孟  冯晓娟  赵丽霞  张红雨  罗有华 《中国物理 B》2012,21(5):56102-056102
Discovering highly stable metal fullerenes such as the celebrated C 60 is interesting in cluster science as they have potential applications as building blocks in new nanostructures.We here investigated the structural and electronic properties of the fullerenes M 12 @Au 20(M=Na,Al,Ag,Sc,Y,La,Lu,and Au),using a first-principles investigation with the density functional theory.It is found that these compound clusters possess a similar cage structure to the icosahedral Au 32 fullerene.La 12 @Au 20 is found to be particularly stable among these clusters.The binding energy of La 12 @Au 20 is 3.43 eV per atom,1.05 eV larger than that in Au 32.The highest occupied molecular orbital-lowest unoccupied molecular orbital(HOMO-LUMO) gap of La 12 @Au 20 is only 0.31 eV,suggesting that it should be relatively chemically reactive.  相似文献   

3.
采用密度泛函理论中的广义梯度近似方法,对M13M=Fe,Ti)以及M13内掺Au20团簇的几何结构和磁性进行了计算研究.结果表明:M13M13内掺Au20团簇的几何结构在0.006—0.05 nm误差范围内保持着Ih对称性.Fe13团簇最低能态的总磁矩为44 μB,内掺到Au20笼中后形成的Fe13内掺Au20团簇的最低能态总磁矩为38 μB,且Au原子与内掺Fe13团簇之间存在着弱铁磁相互作用.Ti13团簇在总磁矩为6 μB时能量最低,掺入Au20笼后形成的Ti13内掺Au20团簇最低能态总磁矩是4 μB,内表面12个Ti原子与表面Au壳之间是弱铁磁相互作用,而与中心Ti原子之间是弱反铁磁相互作用.由于Au20笼状外壳的影响,Fe13内掺Au20和Ti13内掺Au20团簇中Fe13和Ti13的磁矩比无金壳的Fe13和Ti13团簇的磁矩分别减少了6.81 μB和2.88 μB. 关键词: 几何结构 磁性 密度泛函理论  相似文献   

4.
顾娟  王山鹰  苟秉聪 《物理学报》2009,58(5):3338-3351
采用基于密度泛函理论的第一性原理方法系统研究了Au与3d过渡元素构成的混合小团簇的结构、稳定性、电子结构及磁性,得到了Au与3d过渡元素构成的混合小团簇的稳定结构.计算结果表明,Au与3d元素可形成大量的低能异构体,特别是有些异构体在结构上极相近,这不同于共价或离子键类型的团簇.与纯过渡金属团簇类似,这类团簇也表现出复杂的磁性.过渡金属元素的磁矩相比体材料而言既有增强的、也有减弱的,与轨道的交换劈裂密切相关.对于基态构型,AuCr2,Au2Cr2关键词: 密度泛函理论 第一性原理方法 团簇 电子结构  相似文献   

5.
A systematic study on the geometrical structures, electronic and magnetic properties of Au5H n (n=1–10) clusters has been performed by using the all-electron scalar relativistic density functional theory with generalized gradient approximation at the PW91 level. It is found that all Au5H n clusters prefer to keep the planar structures like pure Au5 cluster, the Au5 structures in Au5H4, Au5H5 and Au5H6 clusters are distorted obviously. The adsorption of a number of hydrogen atoms enhances the stability of Au5 cluster and all Au5H n clusters are more stable than pure Au5 cluster energetically. The odd-even alteration of magnetic moment is observed in Au5H n clusters and may be served as the material with tunable code capacity of “0” and “1” by adsorbing odd or even number of H atoms. It seems that the most favorable adsorption between Au5 cluster and a number of hydrogen atoms takes place in the case that the odd number of hydrogen atoms is adsorbed onto Au5 cluster and becomes Au5H n cluster with even number of valence electrons.  相似文献   

6.
First-principles studies are performed on Au12W@Si60 by using projector-augmented wave (PAW) method and generalized gradient approximation for the exchange-correlation energy. The geometry, electronic structure, orbital hybridization, and charge transfer are discussed. It is found that the magic Au12W cluster interacts strongly with Si, thus stabilizes Si60 cage structure. Meanwhile the metal cluster is dissociated when encapsulated in the Si60 cage, and charges are transferred from the Si cage to the metal atoms.Received: 30 December 2003, Published online: 17 February 2004PACS: 61.48. + c Fullerenes and fullerene-related materials - 36.40.Cg Electronic and magnetic properties of clusters - 61.46. + w Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals - 71.20.Tx Fullerenes and related materials; intercalation compounds  相似文献   

7.
An all-electron scalar relativistic calculation on Au n Pt (n = 1−12) clusters has been performed by using density functional theory with the generalized gradient approximation at PW91 level. Our results reveal that all the lowest energy geometries of Au n Pt  (n = 1−12) clusters may be generated by substituting Pt atom for one gold atom of the Au n+1 cluster at the highest coordinated site. Compared with corresponding pure Au n+1 cluster, the lowest energy geometries of Au n Pt clusters are distorted slightly and still keep the planar structures due to the strong scalar relativistic effect in small gold cluster. The Au-Pt bonds are stronger and most Au-Au bonds far from Pt atom are weaker than the corresponding Au-Au bonds in pure Au n+1 cluster. By substituting Pt atom for one gold atom of Au n+1 cluster at the highest coordinated site, the relatively stable and inactive odd-numbered Au n+1 cluster becomes the relatively unstable and reactive odd-numbered Au n Pt cluster, and the relatively unstable and reactive even-numbered Au n+1 cluster becomes the relatively stable and inactive even-numbered Au n Pt  cluster chemically and electronically. All the Au n Pt clusters prefer low spin multiplicity. The even-numbered Au n Pt clusters are found to exhibit zero magnetic moment and the odd-numbered Au n Pt clusters are found to possess magnetic moment with the value of 1 μ B. The odd-even alterations of magnetic moments and electronic configurations for Au n Pt clusters are very obvious and may be simply understood in terms of the electron pairing effect.  相似文献   

8.
The ab initio method based on density functional theory at the B3PW91 level has been applied to study the geometric, electronic, and magnetic properties of neutral and anionic Au n Pd (n?=?1–9) clusters. The results show that the most stable geometric structures adopt a three-dimensional structure for neutral Au7Pd and Au8Pd clusters, but for anionic clusters, no three-dimensional lowest-energy structures were obtained. The relative stabilities of neutral and anionic Au n Pd clusters were analysed by means of the dependent relationships between the binding energies per atom, the dissociation energies, the second-order difference of energies, the HOMO–LUMO energy gaps and the cluster size n, and a local odd–even alternation phenomenon was found. Natural population analysis indicates the sequential transfer from the Pd atom to the Au n frame in Au1,2,3,5Pd and Au2,3Pd? clusters, and from the Au n frame to the Pd atom in other clusters. Much to our surprise, irrespective of whether it is the total magnetic moment or the local magnetic moment, the magnetic moment presents an odd–even alternation phenomenon as a function of the cluster size n. The magnetic effects are mainly localized on the various atoms (Au or Pd) for different cluster size n.  相似文献   

9.
The geometrical, electronic, and magnetic properties of small Au n V (n?=?1–8) clusters have been investigated using density functional theory at the PW91 level. An extensive structural search indicates that the V atom in low-energy Au n V isomers tends to occupy the most highly coordinated position and the ground-state configuration of Au n V clusters favors a planar structure. The substitution of a V atom for an Au atom in the Au n +1 cluster transforms the structure of the host cluster. Maximum peaks are observed for the ground-state Au n V clusters at n?=?2 and 4 for the size dependence of the second-order energy differences, implying that the Au2V and Au4V clusters possess relatively higher stability. The energy gap of the Au3V cluster is the largest of all the clusters. This may be ascribed to its highly symmetrical geometry and closed eight-electron shell. For ground-state clusters with the same spin multiplicity, as the clusters size increases, the vertical ionization potential decreases and the electron affinity increases. Magnetism calculations for the most stable Au n V clusters demonstrate that the V atom enhances the magnetic moment of the host clusters and carries most of the total magnetic moment.  相似文献   

10.
Equilibrium geometries, relative stabilities, and magnetic properties of small AunMn (n=1-8) clusters have been investigated using density functional theory at the PW91P86 level. It is found that Mn atoms in the ground state AunMn isomers tend to occupy the most highly coordinated position and the lowest energy structure of AunMn clusters with even n is similar to that of pure Aun+1 clusters, except for n=2. The substitution of Au atom in Aun+1 cluster by a Mn atom improves the stability of the host clusters. Maximum peaks are observed for AunMn clusters at n=2, 4 on the size dependence of second-order energy differences and fragmentation energies, implying that the two clusters possess relatively higher stability. The HOMO-LUMO energy gaps of the ground state AunMn clusters show a pronounced odd-even oscillation with the number of Au atoms, and the energy gap of Au2Mn cluster is the biggest among all the clusters. The magnetism calculations indicate that the total magnetic moment of AunMn cluster, which has a very large magnetic moment in comparison to the pure Aun+1 cluster, is mainly localized on Mn atom.  相似文献   

11.
We report the magnetic properties of small Ni13-nAln\hbox{Ni}_{13-n}\hbox{Al}_n clusters with n = 0–13 calculated in the framework of density functional theory. The cluster magnetic moment decreases with the sequential substitution of Ni by Al atoms, which can be attributed to a greater degree of hybridization that forces the pairing of the electrons in the molecular orbitals of Ni and Al. For Ni7Al6, the complete quenching of the cluster magnetic moment appears to be due to the antiferromagnetic alignment of atomic spins as revealed by the spin density plots.  相似文献   

12.
The ab initio method based on density functional theory at the PW91PW91 level has been employed to systematically study the structures, stabilities, electronic, and magnetic properties of gold clusters with or without silicon/phosphorus doping. The optimized geometries show that the most stable isomers for Au n Si2 and Au n P2 (n = 1–8) clusters prefer a three-dimensional structure when n = 2 and n = 3 upwards, respectively, and they can be viewed as grown from the already observed Au n−1M2 (M = Si, P). The relative stabilities of calculated Au n M2 (M = Si, P) clusters have been analyzed through the atomic average binding energy, fragmentation energy, second-order difference of energy, and HOMO-LUMO gap. A pronounced odd-even alternative phenomenon indicates that the clusters with even-numbered valence electrons possess a higher stability than their neighboring ones. For both systems, natural population analysis reveals that electronic properties of dopant atoms in the corresponding configuration are mainly related to s and p states. We also investigated magnetic effects of clusters as a function of cluster size, however, their oscillatory magnetic moments were found to vary inversely to the fragmentation energy, second-order difference of energy, and HOMO-LUMO gap.  相似文献   

13.
采用密度泛函理论(density functional theory,DFT)中的广义梯度近似(generalized gradient approximation,GGA)对MPb10M=Ti,V,Cr,Cu,Pd)四种同分异构体的几何结构和磁性进行了计算研究.发现在四种同分异构体中,D4d结构的MPb10M=Ti,V,Cr,Cu,Pd)具有最大的结合 关键词: 几何结构 磁性 密度泛函  相似文献   

14.
利用密度泛函理论中的广义梯度近似对ZrnCo(n=1—13)团簇进行了结构优化、能量和频率的计算,研究了ZrnCo团簇的平衡几何结构、稳定性、电子性质和磁性.结果表明:Zr4Co,Zr7Co,Zr9Co和Zr12Co团簇的基态稳定性较高,是幻数团簇,尤其是Zr12Co团簇基态为Ih< 关键词nCo团簇')" href="#">ZrnCo团簇 平衡几何结构 稳定性和磁性  相似文献   

15.
The decay pathway competition between monomer and dimer evaporation of photoexcited cluster ions Au + n, n = 2-27, has been investigated by photodissociation of size-selected gold clusters stored in a Penning trap. For n > 6 the two decay pathways are distinguished by their experimental signature in time-resolved measurements of the dissociation. For the smaller clusters, simple fragment spectra were used. As in the case of the other copper-group elements, even-numbered gold cluster ions decay exclusively by monomer evaporation, irrespective of their size. For small odd-size gold clusters, dimer evaporation is a competitive alternative, and the smaller the odd-sized clusters, the more likely they decay by dimer evaporation. In this respect, Au + 9 shows an anomalous behavior, as it is less likely to evaporate dimers than its two odd-numbered neighbors, Au + 7 and Au + 11. This nonamer anomaly is typical for copper-group cluster ions M + 9 (M = Cu, Ag, Au) and a similar behavior is found in the anionic heptamers M - 7. It is discussed in terms of the well-known electronic shell closing at n e = 8 atomic valence electrons. Received 2 November 2000  相似文献   

16.
Geometrical, electronic, and magnetic properties of the Sc-doped gold clusters, AunSc (n=1-8), have been studied using the density-functional theory within the generalized gradient approximation. An extensive structural search shows that the Sc atom in low-energy AunSc isomers tends to occupy the most highly coordinated position. The substitution of a Sc atom for an Au atom in the Aun+1 cluster markedly changes the structure of the host cluster. Moreover, we confirm that the ground-state Au6Sc cluster has a distortion to a lower D2h symmetry. The relative stabilities and electronic properties of the lowest-energy AunSc clusters are analyzed based on the averaged binding energies, second-order energy differences, fragmentation energies, chemical hardnesses, and HOMO-LUMO gaps. It is found that the magic Au3Sc cluster can be perceived as a superatom with high chemical stability and its HOMO-LUMO gap is larger than that of the closed-shell Zr@Au14 cluster. The high symmetry and spin multiplicity of the Au3Sc and Au6Sc clusters are responsible for their large vertical ionization potential and electron affinity. The magnetism calculations indicate that the magnetic moment of the Sc atom in the ground-state AunSc (n=2-8) clusters gradually decreases for even n and is completely quenched for odd n.  相似文献   

17.
ABSTRACT

It is essential to understand the intrinsic stability of the gold-thiolate clusters, which present extensive potential applications in many fields such as the catalysis, biomedicines and molecular machines. The electronic structures and aromaticity indexes of a series of Aum(SH)n (m, n?=?5–12) were comprehensively investigated through energetic, vibrational, magnetic, and electronic density properties, which are highly sensitive to the size and topological structure of the cluster. Generally, computational results of energy gap between the frontier molecular orbitals, normalized atomization energy (NAE), and electron localization function (ELF)-σ values exhibit the odd-even effect, in which clusters with the even number of free valence electrons, being reflected by the value of (mn), possess relatively higher stability than the odd one. However, it is difficult to describe the stability of cluster with the sophisticated three-dimensional structure through one single aromaticity index such as the nucleus-independent chemical shift (NICS) value. Principal component analysis and clustering analysis of the calculation results of Aum(SR)n clusters suggest that the value of (mn) and the Au4 unit are important for predicting the stability of the Au clusters.  相似文献   

18.
The geometrical structures, relative stabilities, electronic and magnetic properties of calcium-doped gold clusters Au n Ca (n?=?1–8) have been systematically investigated by employing density functional method at the BP86 level. The optimised geometries show that the ground-state structures are planar structures for Au n Ca (n?=?3–8) clusters. Ca-substituted Au n +1 clusters, as well as Au-capped Au n ?1Ca clusters, are dominant growth patterns for the Au n Ca clusters. The relative stabilities of Au n Ca clusters for the ground-state structures are analysed based on the averaged binding energies, fragmentation energies and second-order difference of energies. The calculated results reveal that the Au2Ca isomer is the most stable structure for small size Au n Ca (n?=?1–8) clusters. The HOMO-LUMO energy gaps as a function of the cluster size exhibit a pronounced even–odd alternation phenomenon. Subsequently, charge transfers and magnetic moment of Au n Ca (n?=?1–8) clusters have been analysed further.  相似文献   

19.
赵文杰  王清林  任凤竹  罗有华 《物理学报》2007,56(10):5746-5753
从第一性原理出发,利用密度泛函理论中的广义梯度近似对ZrnFe(n=2—13)团簇进行了结构优化、能量和频率计算.在充分考虑自旋多重度的前提下,对每一具体尺寸的团簇,得到了多个平衡构型,并根据能量高低确定了团簇的基态结构.综合团簇的结合能、二阶能量差分以及团簇的最高占据轨道和最低未占据轨道间的能隙可知Zr5Fe,Zr7Fe和Zr12Fe团簇的稳定性相对较高,Zr12Fe团簇的结构是具有Ih对称性的正二十面体,而且Zr12Fe的稳定性在所有团簇中是最高的.另外,不仅Zr5Fe,Zr7Fe和Zr12Fe团簇的稳定性相对较高,而且它们均为磁性团簇(而Zrn团簇的磁矩在n≥5时已经发生了淬灭),由此可知通过选择合适的掺杂元素可能得到高稳定的磁性团簇.从Mulliken布居分析结果可知,除了在Zr12Fe团簇中Fe原子失去少量电荷外,其他团簇中Fe原子均从Zr原子那里得到了一定量电荷,即Fe原子在ZrnFe(n=2—13,n≠12)团簇中是电子受体.  相似文献   

20.
Density-functional method PW91 has been selected to investigate the structural, electronic and magnetic properties of Au4M (M =Sc–Zn) clusters. Geometry optimisations show that the M atoms in the ground-state Au4M clusters favour the most highly coordinated position. The ground-state Au4M clusters possess a solid structure for M = Sc and Ti and a planar structure for M = V–Zn. The characteristic frequency of the doped clusters is much greater than that of pure gold cluster. The relative stability and chemical activity are analysed by means of the averaged binding energy and highest occupied molecular orbital and lowest unoccupied molecular orbital energy gap for the lowest energy Au4M clusters. It is found that the dopant atoms can enhance the thermal stability of the host cluster except for Zn atom. The Au4Ti, Au4Mn and Au4Zn clusters have relatively higher chemical stability. The vertical detachment energy, electron affinity and photoelectron spectrum are calculated and simulated theoretically for all the ground-state structures. The magnetism calculations reveal that the total magnetic moment of Au4M cluster is mainly localised on the M atom and vary from 0 to 5 μB by substituting an Au atom in Au5 cluster with different transition-metal atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号