首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
Discovering highly stable metal fullerenes such as the celebrated C 60 is interesting in cluster science as they have potential applications as building blocks in new nanostructures.We here investigated the structural and electronic properties of the fullerenes M 12 @Au 20(M=Na,Al,Ag,Sc,Y,La,Lu,and Au),using a first-principles investigation with the density functional theory.It is found that these compound clusters possess a similar cage structure to the icosahedral Au 32 fullerene.La 12 @Au 20 is found to be particularly stable among these clusters.The binding energy of La 12 @Au 20 is 3.43 eV per atom,1.05 eV larger than that in Au 32.The highest occupied molecular orbital-lowest unoccupied molecular orbital(HOMO-LUMO) gap of La 12 @Au 20 is only 0.31 eV,suggesting that it should be relatively chemically reactive.  相似文献   

2.
陈明君  梁迎春  袁屹杰  李旦 《中国物理 B》2008,17(11):4260-4267
The Brenner-LJ potential is adopted to describe the interaction between C36 clusters and diamond surface, and the deposition mechanism of multi-C36 clusters on the diamond surface is also studied by using the method of molecular dynamics simulation. The simulation results show that the competition effects of two interactions, i.e. the interaction between cluster and cluster and the interaction between cluster and crystal plane, are studied, and then the influence of these competition effects on C36 cluster deposition is analysed. The finding is that when an incident energy is appropriately chosen, C36 clusters can be chemically adsorbed and deposited steadily on the diamond surface in the form of single-layer, and in the deposition process the multi-C36 clusters present a phenomenon of energy transmission. The experimental result shows that at a temperature of 300K, in order to deposit C36 clusters into a steady nanostructured single-layered film, the optimal incident energy is between 10 and 18 eV, if the incident energy is larger than 18 eV, the C36 clusters will be deposited into an island nano-structured film.  相似文献   

3.
李志坚  李锦茴 《中国物理 B》2008,17(8):2951-2955
First-principle calculations are performed to study geometric and electronic properties of both neutral and anionic In4M and In12M (M = C, Si, In) clusters. In4C and In4Si are found to be tetrahedral molecules. The icosahedral structure is found to be unfavourable for In12M. The most stable structure for In12C is a distorted buckled biplanar structure while for In12Si it is of an In-cage with the Si located in the centre. Charge effect on the structure of In12M is discussed. In4C has a significantly large binding energy and an energy gap between the highest-occupied molecularorbital level and the lowest unoccupied molecular-orbital level, a low electron affinity, and a high ionization potential, which are the characters of a magic cluster, enriching the family of doped-group-IIIA metal clusters for cluster-assembled materials.  相似文献   

4.
The geometries, stabilities, and electronic properties of FSin (n=1~12) clusters are systematically investigated by using first-principles calculations based on the hybrid density-functional theory at the B3LYP/6-311G level. The geometries are found to undergo a structural change from two-dimensional to three-dimensional structure when the cluster size n equals 3. On the basis of the obtained lowest-energy geometries, the size dependencies of cluster properties, such as averaged binding energy, fragmentation energy, second-order energy difference, HOMO–LUMO (highest occupied molecular orbital–lowest unoccupied molecular orbital) gap and chemical hardness, are discussed. In addition, natural population analysis indicates that the F atom in the most stable FSin cluster is recorded as being negative and the charges always transfer from Si atoms to the F atom in the FSin clusters.  相似文献   

5.
吕瑾  张江燕  梁瑞瑞  武海顺 《中国物理 B》2016,25(6):63103-063103
The configurations,stabilities,electronic,and magnetic properties of Fe_nAu(n = 1–12) clusters are investigated systematically by using the relativistic all-electron density functional theory with the generalized gradient approximation.The substitutional effects of Au in Fe_(n+1)(n = 1,2,4,5,10–12) clusters are found in optimized structures which keep the similar frameworks with the most stable Fe_(n+1)clusters.And the growth way for Fe_nAu(n = 6–9) clusters is that the Au atom occupies a peripheral position of Fen cluster.The peaks appear respectively at n = 6 and 9 for Fen Au clusters and at n = 5 and 10 for Fe_(n+1)clusters based on the size dependence of second-order difference of energy,implying that these clusters possess relatively high stabilities.The analysis of atomic net charge Q indicates that the charge always transfers from Fe to Au atom which causes the Au atom to be nearly non-magnetic,and the doped Au atom has little effect on the average magnetic moment of Fe atoms in Fen Au cluster.Finally,the total magnetic moment is reduced by 3 μB for each of Fen Au clusters except n = 3,11,and 12 compared with for corresponding pure Fe_(n+1) clusters.  相似文献   

6.
Based on first-principles calculations, we show that very high-density periodic arrays of Nb4 clusters with both the tetrahedron and quadrangle configurations can be stably absorbed on the Cu(111) and Cu(100) surfaces, with the quadrangle configurations more stable than the tetrahedron ones. The strong covalent bonding between atoms within the Nb4 clusters contributes to the stability of Nb4 adsorptions on the Cu surfaces. The energy barriers for the tetrahedron to the quadrangle-Nb4 on Cu(111) and (100) are around 1.21 eV and 0.94 eV/cluster, respectively. The stable adsorption of high-density Nb4 on these surfaces should have important applications.  相似文献   

7.
Geometric structures, stabilities, and electronic properties of SrSin (n = 1-12) clusters have been investigated using the density-functional theory within the generalized gradient approximation. The optimized geometries indicate that one Si atom capped on SrSin_ 1 structure and Sr atom capped Sin structure for difference SrSin clusters in size are two dominant growth patterns. The calculated average binding energy, fragmentation energy, second-order energy difference, the highest occupied molecular orbital, and the lowest unoccupied molecular orbital (HOMO-LUMO) gaps show that the doping of Sr atom can enhance the chemical activity of the silicon framework. The relative stability of SrSi9 is the strongest among the SrSin clusters. According to the mulliken population and natural population analysis, it is found that the charge in SrSin clusters transfer from Sr atom to the Sin host. In addition, the vertical ionization potential, vertical electron affinity, and chemical hardness are also discussed and compared.  相似文献   

8.
<正>The geometric structures,stabilities,and electronic properties of(GaAs)_n tubelike clusters at up to n=120 and single-walled GaAs nanotubes(GaAsNTs) were studied by density functional theory(DFT) calculations.A family of stable tubelike structures with a Ga-As alternating arrangement were observed when n≥8 and their structural units (four-membered rings and six-membered rings) obey the general developing formula.The average binding energies of the clusters show that the tubelike cluster with eight atoms in the cross section is the most stable cluster.The sizedependent properties of the frontier molecular orbital surfaces explain why the long and stable tubelike clusters can be obtained successfully.They also illustrate the reason why GaAsNTs can be synthesized experimentally.We also found that the single-walled GaAsNTs can be prepared by the proper assembly of tubelike clusters to form semiconductors with large band gaps.  相似文献   

9.
张川晖  崔航  申江 《中国物理 B》2012,21(10):103102-103102
The structure and the magnetic moment of transition metal encapsulated in a Au 12 cage cluster have been studied by using the density functional theory.The results show that all of the transition metal atoms(TMA) can embed into the Au 12 cage and increase the stability of the clusters except Mn.Half of them have the I h or O h symmetry.The curves of binding energy have oscillation characteristics when the extra-nuclear electrons increase;the reason for this may be the interaction between parity changes of extra-nuclear electrons and Au atoms.The curves of highest occupied molecular orbital-lowest unoccupied molecular orbital(HOMO-LUMO) gap also have oscillation characteristics when the extra-nuclear electrons increase.The binding energies of many M@Au 12 clusters are much larger than that of the pure Au 13 cluster,while the gaps of some of them are less than that of Au 13,so maybe Cr@Au 12,Nb@Au 12,and W@Au 12 clusters are most stable in fact.For magnetic calculations,some clusters are quenched totally,but the Au 13 cluster has the largest magnetic moment of 5 μ B.When the number of extra-nuclear electrons of the encapsulated TMA is even,the magnetic moment of relevant M@Au 12 cluster is even,and so are the odd ones.  相似文献   

10.
刘峰  秦晓英  刘冕 《中国物理 B》2009,18(10):4386-4392
Structural phase transitions of Zn4Sb3 and its substitutional compounds (Zn0.98M0.02)4Sb3 (M = Al, Ga and In) are investigated by electrical transport measurement and differential scanning calorimetry below room temperature. The results indicate that both β→α and α→α′ phase transitions of Zn4Sb3 are reversible and exothermic processes, which may be explained as that both the transitions originate from the ordering of the disordered interstitial Zn and vacancies in regular sizes. The derived activation energies of β→α and α→α′ phase transition processes for Zn4Sb3 are E1 = 3.9 eV and E2 = 4.1 eV, respectively. Although no remarkable influence on activation energy E2 is observed after Al doping, Al substitution for Zn causes E1 to increase to 4.6 eV, implying its suppression of βα transition to a great extent. Moreover, it is found that both βα and αα′ transitions are completely prohibited by substitution of either In or Ga for Zn in Zn4Sb3. The underlying mechanisms for these phenomena are discussed.  相似文献   

11.
ABSTRACT

The average magnetic moment per atom of Mn13 cluster is expected to be enhanced by doping or coating with a shell. Several ternary core–shell icosahedral clusters TM@Mn12@Au20 were constructed by combining substituting the central Mn with VIII elements (Fe, Co, Ni, Ru, Rh, Pd and Pt) and coating with a icosahedral Au20 shell, and systematically studied by using the first-principles density functional method. Compared to Mn13, Fe@Mn12@Au20 cluster shows a giant enhancement on total magnetic moment (52?µB) which can be greatly attributed to the ferromagnetic coupling between spin moments of atoms. Coating with Au20 shell enlarged the average distances of TM-Mn and Mn-Mn and is a useful way to change the magnetic coupling style. By analysis of density of states and electron localisation functional, we can conclude that the weak hybridisation between Fe and Mn in Fe@Mn12@Au20 is propitious to maintain their original direction of spin moments of atoms and then form ferromagnetic coupling.  相似文献   

12.
齐凯天  毛华平  王红艳  盛勇 《中国物理 B》2010,19(3):33602-033602
Employing first-principles methods,based on the density function theory,and using the LANL2DZ basis sets,the ground-state geometric,the stable and the electronic properties of Aun-2Y2 clusters are investigated in this paper.Meanwhile,the differences in property among pure gold clusters,pure yttrium clusters,gold clusters doped with one yttrium atom,and gold clusters doped with two yttrium atoms are studied.We find that when gold clusters are doped by two yttrium atoms,the odd-even oscillatory behaviours of Aun-1Y and Aun disappear.The properties of Aun-2Y2 clusters are close to those of pure yttrium clusters.  相似文献   

13.
Loss of small fragments (like AuL, Au2L3, Au4L4) have been found systematically in several MALDI and FAB experiments on thiolate-protected gold clusters of different sizes. When using the cluster Au25L18 -1 as parent cluster, the fragmented cluster Au21L14 -1 has been reported to be obtained in high proportion (L = SCH2CH2Ph). Here we analyse a few possible fragmentation patterns of the well-known parent cluster Au25L18 -1 (L = SCH3). Using DFT calculations we study the different atomic configurations obtained after a AuL fragment is lost from Au25L18 -1. We found energetically favourable configurations that can be written as Au13 [Au2L3]6-z [AuL2] z -1, where the modification can be described as a replacement of the long protecting unit by a short one (Au2L3  →  AuL2). A full replacement (z = 6) gives rise to a protected Au19L12 -1 cluster. This mechanism does not modify the super-atomic electronic structure of the gold core, i.e., all these fragments remain an 8 electron super-atom clusters exactly like the parent Au25L18 -1. We suggest that the Au19L12 -1 cluster could be realized by using a bulky thiolate, such as the tert-butyl thiolate SC(CH3)3 .  相似文献   

14.
The structural and electronic properties of MAu19 and M2Au18 (M = Cu and Na) have been studied by the relativistic density-functional calculations. It is found that the most stable configurations of CuAu19 and Cu2Au18 are the face-centered and two-face-centered doped structures based upon the tetrahedral structure Au20. In contrast, the ground states of Na-doped gold clusters (NaAu19 and Na2Au18) exhibit flat-cage configurations. The PES of these ground states are depicted that may be helpful to identify their configurations in the future experiments. The face-centered and two-face-centered doped tetrahedral structures of CuAu19 and Cu2Au18 have a large HOMO–LUMO gap, indicating that they are chemically stable.  相似文献   

15.
I report electronic structures and the cohesive energy for face-centered-cubic (fcc) solid C48N12 using generalized-gradient density-functional theory. The full vibrational spectrum of the C48N12 cluster is calculated within the harmonic approximation at the B3LYP/6-31G* level of theory. The results show that fcc is energetically preferred and a more stable crystal form than body-centered-cubic (bcc). C48N12 clusters are found to condense by a weak (0.29 eV) van der Waals force. The band gap of fcc C48N12 is calculated to be 1.3 eV at the GGA-PW91 level, whereas the HOMO-LUMO gap is calculated to be 2.74 eV using B3LYP/6-31G*.  相似文献   

16.
A systematic study of the X2Aun (X = La, Y, Sc; n = 1–9) clusters are performed by using the density functional theory at TPSS level. The structures, stabilities, electronic, and magnetic properties are investigated in comparison with pure gold clusters. The results show that the transition points of the doped clusters from two-dimensional to three-dimensional structure are obviously earlier than gold clusters. The impurity X atoms tend to occupy the most highly coordinated position and form the largest probable number of bonds with gold atoms. In addition, the impurity atoms can strongly enhance the stabilities of gold clusters. It indicates that the impurity atoms dramatically affect the geometries and stabilities of the Aun clusters. The highest occupied molecular orbital–lowest occupied molecular orbital gap, vertical ionisation potential, and chemical hardness show that the X2Au6 clusters have higher stabilities than the others. In La2Au1–9, Y2Au1–7, and Sc2Au1–4 clusters, the charges transfer from X atoms to the Aun frames. The total magnetic moments of X2Aun clusters exist distinctly odd–even alternation behaviours except for La2Au4 and Sc2Au4 clusters.  相似文献   

17.
Structures and properties of an Au20 cluster doped with two Li atoms, Au18Li2, have been investigated using relativistic density functional theory within the framework of the zeroth-order regular approximation. Various initial structures have been generated and employed for geometry optimization followed by vibration analysis to check the stability of the final optimized structures. We have calculated various properties like binding energy, ionization potential, electron affinity and the HOMO–LUMO gap of these structures. It has been found that two dopant Li atoms favour occupying two different surface positions of the pyramidal Au20 cluster. The binding energy of the surface-doped Au18Li2 cluster is 1.017?eV higher than that of the pure Au20 cluster and the HOMO–LUMO gap (1.742?eV) is as high as a pure Au20 cluster (1.786?eV). Interestingly, we observe that the HOMO–LUMO gap as well as the binding energy can be increased beyond those of the Au18Li2 cluster with the help of further Li atom doping. In fact, a doped tetrahedral Au16Li4 cluster, where all the dopants are at the surface sites, possesses a very high HOMO–LUMO gap of 2.117?eV. Geometric and energetic parameters indicate that the Au16Li4 cluster might be considered as a possible ‘superatom’ in the design of novel cluster-assembled materials.  相似文献   

18.
All-electron scalar relativistic calculations on Au5X (X = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn) clusters have been performed by using density functional theory with the generalized gradient approximation. Our calculation results indicate that all the lowest energy geometries of Au5X clusters have planar structures; the doped X atoms prefer to occupy the fourfold coordination site. Except Au5Fe, Au5Co and Au5Zn, for other clusters including pure Au6 cluster, the HOMO are delocalized obviously with a contribution from all atoms in the cluster. On the contrary, the electron localization in Au5Zn is very strong resulting in the least stability of this cluster. Au5Cu cluster with six delocalized electrons being defined as magic number for two-dimensional system has the largest VIP and deepest HOMO energy level. With the substitution Au for X atoms, the metallicity of all Au5X clusters is reinforced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号