首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 0 毫秒
1.
采用光线追迹法详细分析线阵二极管激光器经微球面柱透镜快轴准直后的光强变化情况,利用快轴准直微球面柱透镜的球差可调整输出激光光强分布的特性,得出了快轴准直输出发散角约5°时光强分布具有较好的平顶形式。根据叠阵二极管激光器输出光的特点,设计了由25个二极管激光器组成的叠阵二极管激光器的光束整形输出系统,该系统由快轴准直微透镜、快轴耦合透镜和慢轴耦合透镜组成,把需要泵浦的激光介质薄片设计在快轴耦合透镜的焦点上,并且在慢轴耦合透镜的成像面附近,得到了7mm×8mm的泵浦光斑,光强不均匀性约10%,输出效率达到85%。  相似文献   

2.
基于mini-bar的光纤耦合实验研究   总被引:5,自引:5,他引:0       下载免费PDF全文
基于mini-bar的光纤耦合是一种进一步提高二极管激光器光纤耦合系统出光亮度的有效方法。本文对Osram公司的一款连续60 W mini-bar的发光特性进行了实验研究,选用的mini-bar在工作电流60 A时输出功率60 W,电光转换效率最大为60%,中心波长973.7 nm,慢轴发散角为9.3(1/e2)。分析了其慢轴准直的特性,了解慢轴准直透镜的选择原则。器件准直后的慢轴发散角为47.6 mrad。通过对光束参量积的计算了解到mini-bar的光束可以直接耦合进入600 m的光纤,并进行了单片mini-bar的耦合实验,得到准直系统与耦合透镜组的传输效率为83%~85%,光纤的耦合效率为86%~93%,整个系统的光光效率大于72%。  相似文献   

3.
多线阵半导体激光器的单光纤耦合输出   总被引:4,自引:1,他引:3  
设计并研制了一种多线阵半导体激光器的高亮度光纤耦合输出模块.激光器芯片采用了分子束外延方法生长的宽波导、双量子阱结构AlGaAs/GaAs激光器外延材料,激光器模块采用6只准直的线阵半导体激光器,器件腔长为1.2mm,单个发光单元宽度为100μm,发光单元周期为500μm,单线阵器件包括19个发光单元,单线阵器件的连续输出功率为50W,每只单线阵器件的准直输出光束经过空间合束后再通过光束对称化变换实现了多线阵器件输出的高光束质量功率合成,采用平凸柱透镜实现了合束光束与400μm芯径、数值孔径0.22石英光纤的高效率耦合,整体耦合效率达到65%,最大耦合输出功率达到195W,光纤端面功率密度达到1.55×105W/cm2.  相似文献   

4.
设计并研制了一种多线阵半导体激光器的高亮度光纤耦合输出模块.激光器芯片采用了分子束外延方法生长的宽波导、双量子阱结构AlGaAs/GaAs激光器外延材料,激光器模块采用6只准直的线阵半导体激光器,器件腔长为1.2 mm,单个发光单元宽度为100 μm,发光单元周期为500 μm,单线阵器件包括19个发光单元,单线阵器件的连续输出功率为50 W,每只单线阵器件的准直输出光束经过空间合束后再通过光束对称化变换实现了多线阵器件输出的高光束质量功率合成,采用平凸柱透镜实现了合束光束与400 μm芯径、数值孔径0.22石英光纤的高效率耦合,整体耦合效率达到65%,最大耦合输出功率达到195 W,光纤端面功率密度达到1.55×105 W/cm2.  相似文献   

5.
应用ZEMAX光学设计软件对基于min-bar的半导体激光光纤耦合模块进行仿真模拟,采用22只输出功率为60 W的mini-bar半导体激光器组成两列空间叠阵作为耦合光源,通过准直、合束、聚焦等方法高效耦合进入芯径400μm、数值孔径0.22的光纤,输出功率可达1 200 W,光纤耦合效率大于92%。  相似文献   

6.
采用光束整形和空间合束的方法,研制出高功率、高效率多阵列光纤耦合半导体激光模块。将波长为976nm连续工作的5个标准半导体阵列,通过对快轴进行准直和快慢轴光束旋转的方式进行光束整形,准直后进行空间合束,经耦合透镜聚焦,耦合入芯径400μm、数值孔径0.22的光纤。测量结果显示:光纤的出光功率最大可达到327 W,光纤耦合效率大于93.6%。  相似文献   

7.
半导体激光器光栅-外腔光谱合束是一种实现高亮度半导体激光(DL)输出的有效方法。本文采用mini-bar叠阵作为合束光源,有效减小了"smile"效应对合束效率的影响,匀化了合束后的快慢轴光束质量,便于进一步的光纤耦合输出。采用柱面镜作为外腔镜,有效抑制了合束中的互锁定现象,从而取代了传统的空间滤波,减小了系统规模。在工作电流为75A时得到了159W的高亮度DL输出,合束光谱宽度为11.97 nm,电光效率为47.35%。当工作电流为60A时,合束光的快慢轴光束质量分别为3.145 mm·mrad与3.554 mm·mrad。  相似文献   

8.
基于公共环形腔耦合的光纤激光器相干合成技术   总被引:2,自引:2,他引:0       下载免费PDF全文
 为提高光纤激光器无源自调整相干合成阵列的效率、稳定性和可扩展性,提出了基于公共光纤环形腔耦合与单模光纤滤波的光纤激光器相干合成方案。将多个2×2的光纤耦合器分别插入各单元激光器的谐振腔,利用耦合器余下的端口,两两相连构成公共环形耦合腔。采用单模光纤滤波技术,提高了各输出激光束之间相位锁定的稳定性。利用该方案在实验上实现了三路光纤激光器的被动锁相输出,实验测得的远场干涉光斑、输出功率及光谱均表明该方案适于构建性能较好的光纤激光器相干合成阵列。  相似文献   

9.
高平均功率薄片激光多通泵浦耦合系统设计   总被引:3,自引:0,他引:3       下载免费PDF全文
薄片激光器的耦合系统主要采用正交的快慢轴柱透镜及柱面反射镜对220个线阵的大尺寸二极管面阵光源进行准直和4通耦合,在泵浦区得到23 mm×27 mm的光斑,耦合效率达到85%,用CCD观测到泵浦区光斑的均匀性较好.采用光线追迹的方法从快慢轴耦合透镜和反射镜两方面进行计算模拟.泵浦模块快轴和慢轴两方向光经过相应耦合透镜后,薄片处泵浦区光强近乎平顶分布.  相似文献   

10.
阵列半导体激光器的光束参数测量与光纤耦合   总被引:4,自引:0,他引:4  
采用ISO推荐的方法测量了发光面为 1μm× 15 0 μm的阵列半导体激光器的光束半径、远场发散角、束腰位置、瑞利长度 ,并根据测量结果计算了光束传输因子 (M2 因子 )。以此为基础 ,研究了半导体激光器光束的快轴准直以及光纤耦合技术 ,采用微柱面透镜准直后 ,阵列半导体激光器快轴方向发散角可减小到 0 .48°。设计了光纤耦合光学系统 ,与 10 0 μm光纤耦合时的耦合效率为 71.0 % ,与 2 0 0 μm光纤耦合时的效率为 83.4%。  相似文献   

11.
高功率半导体激光器光纤耦合实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
为进一步提高光纤耦合半导体激光器的输出功率,提出了一种多单管半导体激光器通过台阶分布、光束精密准直及自由空间合束实现高功率光纤耦合输出的方法,该方法具有结构简单、光学元件易于加工、耦合效率高等优点。采用这种方法对5只封装在次热沉上的单管半导体激光器开展了芯径100μm、数值孔径0.22多模光纤的耦合实验研究,当工作电流为7.0 A时,光纤连续输出功率为21.8 W,亮度为1.83 MW/(cm~2·sr),耦合效率为70.32%。  相似文献   

12.
张俊  彭航宇  朱洪波  秦莉  宁永强  王立军 《发光学报》2015,36(10):1188-1194
针对高功率半导体激光器存在的光束质量差、单元功率低的缺点,利用合束技术来提高激光功率及光束质量,配合QBH光纤前端帽优化聚焦镜以实现高效耦合。采用11个条宽5.4 mm的迷你线阵合束,通过光束整形、空间合束、偏振合束和波长合束,聚焦耦合进200μm/0.2光纤。在50 A电流下,实现连续386 W输出,功率密度为1.23 MW/cm2,电光效率为43.6%。在200 W的功率下,该激光器可以切割厚度为1 mm的不锈钢薄板。  相似文献   

13.
随着半导体激光器在工业、军事、核能等领域的应用越来越多,单个迭阵输出的光功率密度已经不能满足实际的需求,这就需要将多个半导体激光迭阵的光束耦合成为一个共同的光束,以提高输出功率和亮度.所以采用怎样的光束耦合技术能实现高亮度、高质量的激光输出就成了一个关键性的问题.对于该技术的研究,国内还没有实验方面的报道.主要介绍了大功率半导体激光器偏振耦合原理、实验的技术路线,以及对808nm半导体激光迭阵进行耦合实验的结果及分析.对2个bar、功率为40W/bar的808nm连续半导体激光迭阵,实现偏振耦合的总效率超过90%,聚焦得直径为3mm光斑,输出功率达到134W,总体效率超过84%.对7个bar、峰值功率100W/ba、r占空比20%的808nm准连续半导体激光迭阵进行了偏振耦合,其效率达到67%,得到4.5mm×4.5mm的光斑.  相似文献   

14.
高亮度半导体激光阵列光纤耦合模块   总被引:7,自引:6,他引:1       下载免费PDF全文
利用2只915 nm半导体激光短列阵作为子模块,设计并研制出连续输出的高亮度光纤耦合模块。首先对每个半导体激光短列阵进行光束整形,从而提高它的光束质量;然后采用空间复用技术将这两个半导体激光短列阵出射的激光在光参数积小的方向上叠加,并利用偏振复用技术进一步提高光束质量;最后利用单片非球面透镜将激光聚焦到芯径为100 μm、数值孔径为0.22的光纤中。测量结果显示:在工作电流为52.5 A时,聚焦镜焦平面的光斑尺寸为105.4 μm;耦合后测量光纤出光功率可达72.6 W,对应亮度为6.08 MW/(cm2·sr),模块的电光转换效率为42.2%。最后测量了模块在不同驱动电流时的光谱,证明该模块的散热性能良好。  相似文献   

15.
Based on a set of microoptics the output radiation from a continuous wave (CW) linear laser diode array is coupled into a multi-mode optical fiber of 400 μm diameter.The CW linear laser diode array is a 1 cm laser diode bar with 19 stripes with 100 μm aperture spaced on 500 μm centers.The coupling system contains packaged laser diode bar,fast axis collimator,slow axis collimation array,beam transformation system and focusing system.The high brightness,high power density and single fiber output of a laser diode bar is achieved.The coupling efficiency is 65% and the power density is up to 1.03×104 W/cm2.  相似文献   

16.
用3只976 nm半导体激光短列阵作为子模块,研制出连续工作的百瓦级高亮度光纤耦合模块。首先,利用光束转换器将每个半导体激光短列阵进行光束整形;然后采用空间复用技术将3个半导体激光短列阵在光参数积小的方向上叠加,并利用倒置伽利略望远镜作为扩束器进一步压缩发散角;最后利用优化结构的透镜组将激光聚焦到芯径200 μm,数值孔径为0.22的光纤中。测量结果显示:聚焦后激光的发散角为24.8°,焦平面的光斑尺寸为175.2 μm;耦合后测量光纤出光功率可达107 W,对应亮度为2.23 MW/(cm2·sr),达到了国内利用列阵进行光纤耦合的领先水平;在工作电流为52.5 A时,电光转换效率为43.1%,远高于全固态等激光器;最后测量本模块在不同驱动电流时的光谱,并以此计算出模块的热阻为1.29 K/W,说明它的散热性能良好。结果表明,本光纤耦合模块适合应用于泵浦光纤激光器、医疗和激光加工等领域。  相似文献   

17.
1 Introduction  Laserdiodearray (LDA )thathasmultipleemittingregionsisaperfectdevicetoachievehigherpoweroutputswithanincreasedbrightness.ThehighCW power ,highbrightnessandfiberoutputofalaserdiodebarcanbeappliedinmedicine ,materialsprocessing ,solid statelas…  相似文献   

18.
High power continuous wave operation of a diode face-pumped thin Nd:YAG slab laser is reported. A novel pumping geometry for a thin Nd:YAG slab using cylindrical lens duct coupled diode laser stacks is demonstrated. In a close-coupled resonator, a maximum laser output power of 260 W in multimode operation is obtained. This corresponds to a slope efficiency of 34% and an optical-to-optical efficiency of 27%, respectively. In high-brightness operation, a polarized laser output of 70 W has been obtained with a beam quality factor close to 4 in both directions. The polarization contrast ratio is >100. PACS 42.55.Xi; 42.60.Pk; 42.60.By  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号