首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Abstract

We present a new generalized scaling relationship accounting both for the real and imaginary parts of the complex permittivity data. The generalized scaling procedure has been successfully used for various relaxation processes in liquid crystals (4-bromobenzylidene-4′-pentyloxyaniline, 4-bromobenzylidene-4′-hexyloxyaniline, 4′-butyl-4-(2-methylbutoxy)-azoxybenzene, 4-ethyl-4′-octylazoxybenzene), and in glass-forming liquids (glycerol, propylene carbonate, salol, cresolphthalein-dimethylether). As it is shown, one obtains common master-curve for liquid-like phases (isotropic liquid, cholesteric, nematic, smectic A), solid-like phases (smectic B, conformationally disorder crystal) and supercooled liquid phase.  相似文献   

2.
G. Helgesen 《Physica A》1991,170(3):488-502
Polystyrene spheres of the same size (10–100μm) dispersed in ferrofluid produce voids, which have been denoted magnetic holes. A two-dimensional system of interacting magnetic holes confined between two glass plates and subject to rotating magnetic fields in the sample plane are studied in a light microscope. For low frequencies of the field rotation, the holes form pairs, which arrange themselves in a regular triangular lattice when stabilized with a weak constant field normal to the sample plane. By increasing the frequency of the rotating field, we observe that above a critical frequency, the steady forward rotation of the pairs is interrupted by backward rotations in short time intervals. Because the intervals of backward rotation occur at different times for each individual pair, disorder is introduced in the system, and the triangular lattice of pairs “melts” and forms a liquid-like structure at high rotation frequencies of the field. This “melting” transition is observed both directly and in light scattering experiments using a laser.  相似文献   

3.
利用时间分辨Kerr旋光技术测量低温下稀磁半导体Ga0.937Mn0.063As中光注入极化载流子的自旋进动信号,并观察到自旋极化载流子的有效g因子值随外磁场的增强而增大的反常现象.这归结于磁场导致局域化空穴转化为非局域化空穴,从而使自发磁化强度增强,有效g因子值增大.基于此物理图像,进一步给出了(Ga,Mn)As的有效g因子与外磁场的关系式. 关键词: 时间分辨Kerr旋光测量 Zeeman效应 Ruderman-Kittel-Kasuya-Yosida模型  相似文献   

4.
李桂荣  王芳芳  王宏明  郑瑞  薛飞  程江峰 《中国物理 B》2017,26(4):46201-046201
The tensile tests of TC4 alloy are carried on electronic universal testing machine in the synchronous presence of high pulsed magnetic field(HPMF) parallel to the axial direction.The effects of magnetic induction intensity(5 = 0,1 T,3 T,and 5 T) on elongation(5) of TC4 alloy are investigated.At 3 T,the elongation arrives at a maximum value of12.41%,which is enhanced by 23.98%in comparison with that of initial sample.The elongation curve shows that 3 T is a critical point.With B increasing,the volume fraction of α phase is enhanced from 49.7%to 55.9%,which demonstrates that the HPMF can induce the phase transformation from β phase to α phase.Furthermore,the magnetic field not only promotes the orientation preference of crystal plane along the slipping direction,but also has the effect on increasing the dislocation density.The dislocation density increases with the enhancement of magnetic induction intensity and the 3-T parameter is ascertained as a turning point from increase to decrease tendency.When B is larger than 3 T,the dislocation density decreases with the enhancement of B.The influence of magnetic field is analyzed on the basis of magneto-plasticity effect.The high magnetic field will enhance the dislocation strain energy and promote the state conversion of radical pair generated between the dislocation and obstacles from singlet into triplet state,in which is analyzed the phenomenon that the dislocation density is at an utmost with B = 3 T.Finally,the inevitability of optimized 3-T parameter is further discussed on a quantum scale.  相似文献   

5.
We measured the temperature dependence of the linear high field Hall resistivity of ( K) and ( K) thin films in the temperature range from 4 K up to 360 K in magnetic fields up to 20 T. At low temperatures we find a charge-carrier density of 1.3 and 1.4 holes per unit cell for the Ca- and Sr-doped compound, respectively. In this temperature range electron-magnon scattering contributes to the longitudinal resistivity. At the ferromagnetic transition temperature a dramatic drop in the number of charge-carriers n down to 0.6 holes per unit cell, accompanied by an increase in unit cell volume, is observed. Corrections of the Hall data due to a non saturated magnetic state will lead a more pronounced charge-carrier density collapse. Received 22 July 1999 and Received in final form 7 October 1999  相似文献   

6.
In this work we describe a two-dimensional computer simulation of magnetic field enhanced plasma immersion implantation system. Negative bias voltage of 10.0 kV is applied to a cylindrical target located on the axis of a grounded vacuum chamber filled with uniform nitrogen plasma. A pair of external coils creates a static magnetic field with main vector component along the axial direction. Thus, a system of crossed E×B field is generated inside the vessel forcing plasma electrons to rotate in azimuthal direction. In addition, the axial variation of the magnetic field intensity produces magnetic mirror effect that enables axial particle confinement. It is found that high-density plasma regions are formed around the target due to intense background gas ionization by the trapped electrons. Effect of the magnetic field on the sheath dynamics and the implantation current density of the PIII system is investigated. By changing the magnetic field axial profile (varying coils separation) an enhancement of about 30% of the retained dose can be achieved. The results of the simulation show that the magnetic mirror configuration brings additional benefits to the PIII process, permitting more precise control of the implanted dose.  相似文献   

7.
Mean-field equations describing the metal-insulator (MI) transition are formulated. They involve two coupled order parameters characterizing this transition: (i) a scalar order parameter describing the density change accompanying the transition from the insulating state to the metallic one and (ii) an order parameter (a two-component vector) describing the electron density in the metallic or semimetallic phase affected by the applied magnetic field. Two components of this vector correspond to different possible spin states of electrons in the applied magnetic field. The transition in the density of metallic and insulating phases being a first order phase transition is treated in terms of the Cahn-Hilliard-type gradient expansion. The transition in the electron density is a second order phase described by the Ginzburg-Landau-type functional. The coupling of these two parameters is described by the term linearly dependent on the electron density n in the metal with the proportionality factor being a function of the density of the metallic phase. The derived equations are solved in the case of the MI interface in the presence of both parallel and perpendicular uniform magnetic fields. The calculated surface tension Σmi between the metallic and insulating phases has a singular behavior. In the limit of zero electron density n ? 0, Σmin 3/2. Near the MI transition point T c(h) in the applied magnetic field, Σmi ~ [T - T c(h)]3/2. The singular behavior of the surface tension at the MI interface results in the clearly pronounced hysteresis accompanying the transition from the insulating to metallic state and vice versa.  相似文献   

8.
The role of defects on the magnetic behaviour of exchange coupled interfacial structures of Fe/NiO and NiO/Fe on Si substrates has been studied. For introduction of defects in the structures, swift (~ 100 MeV) heavy ion irradiation has been used, which is known to cause structural and microstructural modifications. In our earlier study [Srivastava, N; Srivastava, P.C. J. Appl. Phys. 2012, 111, 123909] on similar structures, the significant magnetic behaviour (of exchange bias (EB) and coercivity) for Fe/NiO/nSi interfacial structure was observed and discussed in the realm of interfacial structural modification in the antiferromagnetic layer of the structure. The irradiated interfacial structures have been characterized from X-ray diffraction and M–H characteristics. Structural investigation has shown the formation of various silicide and oxide phases due to the irradiation-induced interfacial intermixing. A significant enhancement in EB field and coercivity has been observed for Fe/NiO/nSi interfacial structure on the irradiation (as compared to unirradiated ones). The observed enhanced EB and coercivity on the irradiation has been understood due to the creation of domain wall pinning centres across the interface as a result of ion irradiation. Moreover, the present study confirms the role of defects in the antiferromagnetic layer to cause the significant change in EB and coercivity. The observation supports the domain state model of EB in the exchange-coupled structures.  相似文献   

9.
Glass formation in simple monatomic nanoparticles has been studied by molecular dynamics simulations in spherical model with a free surface. Models have been obtained by cooling from the melt toward glassy state. Atomic mechanism of glass formation was monitored via spatio-temporal arrangement of solid-like and liquid-like atoms in nanoparticles. We use Lindemann freezing-like criterion for identification of solid-like atoms which occur randomly in supercooled region. Their number grows intensively with decreasing temperature and they form clusters. Subsequently, single percolation solid-like cluster occurs at temperature above the glass transition. Glass transition occurs when atoms aggregated into this single percolation cluster are in majority in the system to form relatively rigid glassy state. Solid-like domain is forming in the center of nanoparticles and grows outward to the surface. We found temperature dependence of potential energy, mean-squared displacement (MSD) of atoms, diffusion constant, incoherent intermediate scattering function, radial distribution function (RDF), local bond-pair orders detected by Honeycutt-Andersen analysis, radial density profile and radial atomic displacement distributions in nanoparticles. We found that liquid-like atoms in models obtained below glass transition have a tendency to concentrate in the surface layer of nanoparticles. However, they do not form a purely liquid-like surface layer coated nanoparticles.  相似文献   

10.
Magnetoactive elastomers are promising for use in designing of magnetically operated devices for signal processing and sensors. The results from studying the electrophysical and acoustic properties of new magnetoactive elastomers structured by a nonuniform magnetic field are presented. It is shown that the prestructuring of the magnetic disperse filler by a magnetic field during composite synthesis substantially improves the coefficient of the transmission of electromagnetic radiation through the sample. The effect gets stronger as the mass fraction of filler increases. As the filler concentration grows, the transmission coefficient falls by 50%, and the ref lection coefficient grows by a factor of 150%. The longitudinal elastic modulus and the density vary within the ranges of 1.4–1.8 GPa and 2485–3362 kg m–3, respectively, depending on the magnetic filler concentration and the sample’s structuring. The obtained results demonstrate the potential of usinf structured magnetoactive elastomers as radar absorbing materials.  相似文献   

11.
Three-dimensional dynamic distributions of oscillations of the magnetic field over wave vectors k have been obtained from the plasma and magnetic measurements on four satellites in the Cluster experiment in a turbulent plasma in the outer Earth’s cusp and near it. The resulting k spectra exhibit strong inhomogeneous anisotropy. The dependences of the energy of magnetic oscillations on the wavenumber have been analyzed for 288 three-dimensional spectra in the wavelength interval covering the magnetohydrodynamic and ion scales. It has been shown that the energy density of magnetic fluctuations per unit volume in the wave vector space that is averaged over the total solid angle decreases in the wavelength interval from ~2000 to ~10 km with an increase in according to a power law with an exponent of α = -5.0 ± 0.3 for any magnitude and character of anisotropy.  相似文献   

12.
We have carried out a theoretical analysis of the anisotropy of magnetic quenching of positronium states in noncubic crystals oriented relative to the direction of the external magnetic field. We show that an initial polarization of the positrons amplifies the anisotropy of magnetic quenching of positronium and lowers the magnitude of the magnetic field in which the anisotropy is maximum. We have obtained numerical estimates of the magnitude of the experimentally observed effect for quasipositronium in a single crystal of crystalline quartz and for a positronium complex in a single crystal of naphthalene. Fiz. Tverd. Tela (St. Petersburg) 41, 999–1002 (June 1999)  相似文献   

13.
The phase transitions and the internal aggregate structures of a highly dense suspension composed of magnetic plate-like particles with a magnetic moment normal to the particle axis have been investigated by means of the Monte Carlo method. The present study considered a quasi-2D system in order to clarify the influences of the volumetric fraction of particles and the magnetic field strength on particle aggregations and phase transitions. The internal structures of particle aggregates have been discussed quantitatively in terms of pair correlation functions, orientational pair correlation functions, nematic and polar order parameters. The main results obtained here are summarized as follows. When the influence of the magnetic interaction between particles is of the same order of that of the perpendicular magnetic field strength, the particles form column-like clusters, and the internal structure of the suspension shows solid-like structures. For the case of a strong applied magnetic field, the internal structure is transformed from solid-like structures into isotropic ones. However, as the volumetric fraction increases, the particles form brick wall-like structures under the situation of a strong applied magnetic field, and the internal structure exhibits solid-like ones. The brick wall-like structures also appear for a relatively weak magnetic field applied along the in-plane direction despite a slightly smaller volumetric fraction compared with the case of the perpendicular applied magnetic field.  相似文献   

14.
The giant decrease of the electrical resistance of HgCr2Se4 (more than by a factor of 200) caused by magnetic field-induced changes in the carrier mobility and concentration, the quadratic dependences of magnetoresistance and normal Hall constant on magnetic induction in the paramagnetic region, as well as the deviations from these dependences observed to occur as one approaches the Curie temperature, are discussed within a model involving carriers of several types (holes in the valence band, electrons localized at ferron-type impurity centers, and electrons hybridized in the impurity and conduction bands). Fiz. Tverd. Tela (St. Petersburg) 39, 848–852 (May 1997)  相似文献   

15.
石俊杰  郝建红  张芳  赵强  范杰清  沈硕  董志伟 《强激光与粒子束》2022,34(12):124004-1-124004-6
模拟研究了非理想氢原子束在真空环境下的长程传输效应。根据中性化程度的不同,将非理想束分为欠中性束和过中性束。通过建立束流传输的准电磁模型,研究了束流密度、中性化因子、空间磁场和弹性散射等因素对非理想氢原子束的影响。结果表明:对于欠中性束,负氢离子的存在对氢原子的传输几乎没有影响,因此欠中性束的发射装置可以考虑去除偏置磁场,以减小设备体积和质量;对于过中性束,束流损失率与束流密度和中性化因子有关,即束流密度越大,束流损失越大;中性化因子越高,束流损失就越高;而无论是欠中性束还是过中性束,空间磁场和粒子间的弹性散射对其传输都没有影响。  相似文献   

16.
The results of an investigation of the electromagnetic wave polarization, probing high-temperature laser plasma, as well as spatial-temporal structure of the magnetic fields, electron density, current density, and electron drift velocity are presented. To create the plasma, plane massive Al targets were irradiated with the second harmonic of a phoenix Nd laser at intensities up to 5·1014 W/cm2. It was shown that the magnetooptical Faraday effect is the main mechanism responsible for the changing polarization of the probing wave. Magnetic fields up to 0.4 MG with electron densities ∼1020 cm−3 were measured. Analysis of the magnetic field spatial distribution showed that the current density achieved the value ∼90 MA/cm2 on the laser axis. The radial structure of the magnetic field testified to the availability of the reversed current in the laser plasma. The spatial and temporal resolutions in these experiments were equaled to ∼5 μsec and ∼50 psec, respectively. Translated from Preprint No. 35 of the Lebedev Physics Institute, Moscow, 1993.  相似文献   

17.
Liu H  Sun X  Pei Y  Yao F  Jiang Y 《Optics letters》2011,36(13):2414-2416
We numerically study the coupling of magnetic plasmon polaritons (MPPs) with Bloch surface waves (BSWs) in a system composed of a one-dimensional gold nanowire pair array lying on a periodic dielectric multilayer. At an appropriate period of the dielectric multilayer, maximum coupling takes place between the MPP and the BSW. It results in two branches of hybridized MPPs with a Rabi-type splitting as large as 125 meV. The maximal magnetic field intensity achieved in the center of nanowire pairs is enhanced greatly and an enhancement factor >1.5 is observed compared with that achieved by a nanowire pair array lying directly on a substrate. This has potential applications in nonlinear optics and near-field enhanced spectroscopy.  相似文献   

18.
We present the effective theory for the low-energy dynamics of two-dimensional interacting electrons in the presence of a weak short-range disorder and a weak perpendicular magnetic field, with the filling factor γ ? 1. We investigate the exchange enhancement of the g factor, the effective mass, and the decay rate of the simplest spin wave excitations at γ=2N+1. We obtain the enhancement of the field-induced gap in the tunneling density of states and the dependence of the tunneling conductivity on the applied bias.  相似文献   

19.
The production method of magnetic suspension consisting of ferromagnetic particles dispersed in cedarwood oil is presented at the beginning of this article. Next, the set-up for microwaves generation using a klystron is described. The main part of this paper concerning microwave transmission and polarization during its passage in samples of the produced magnetic suspension placed in a magnetic field is based on the following parameters: induction of this field, filling factor of magnetic suspension by ferromagnetic particles, dimensions of particles, viscosity of liquid carrier, and ratio of the magnetic field changes. Conducted investigations show that microwaves are damped and polarized in these magnetic suspensions. Obtained results are discussed and observed effects are explained by ordering of ferromagnetic particles in magnetic suspension by applied magnetic field.  相似文献   

20.
The magnetooptics and picosecond dynamics of the radiative recombination of excitons in self-assembled semimagnetic CdSe/ZnMnSe quantum dots is studied at low temperatures. The behavior of individual quantum dots in a magnetic field and with an increase in temperature is indicative of a strong exchange interaction of excitons and magnetic Mn ions giving rise to a quasi-zero-dimensional exciton magnetic polaron. When the exciton energy exceeds the intracenter transition energy in Mn, the energy is rapidly transferred from excitons to Mn ions (faster than 20 ps). In the opposite case, a substantial red shift (~15 meV) of the emission line maximum is observed during the exciton lifetime ~500 ps, presenting the dynamics of the formation of a magnetic polaron with a characteristic time of ~110 ps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号