首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
PCA-SVR联用算法在近红外光谱分析烟草成分中的应用   总被引:5,自引:0,他引:5  
由50份烟草样品的近红外漫反射光谱组成的光谱矩阵经过主成分分析降维,采用基于支持向量机回归(SVR)算法,以常规化学分析方法测定的总糖、还原糖、总氮、烟碱的含量为参考值,建立了烟草中主要成分近红外光谱定量分析定标模型,并采用留一法交叉验证(LOOCV)对模型进行验证。以内部交叉验证预测的RMSE值为判据,从核函数类型、惩罚因子C和不敏感函数ε取值等方面对定标模型进行优化,获得不同成分定标模型的优化参数。烟草总糖、还原糖、总氮、烟碱优化定标模型的RMSE值分别为1.581,1.412,0.117和0.313。同时建立了烟草以上成分的偏最小二乘回归(PLS)、多元线性回归(MLR)以及误差反向传播人工神经网络(BP-ANN)定标模型,通过内部交叉验证的RMSE值与SVR定标模型进行比较,结果表明SVR模型具有更好的预测效果。  相似文献   

2.
羊肉嫩度傅里叶变换近红外光谱偏最小二乘法定量分析研究   总被引:11,自引:0,他引:11  
以从内蒙、宁夏、甘肃、新疆4个肉羊产区筛选的有代表性的98份羊肉样品为试材,应用傅里叶变换近红外光谱技术探讨了羊肉嫩度无损检测的方法。以模型决定系数(r2)、校正标准差(RMSECV)和预测标准差(RMSEP)为模型精度评价指标,采用偏最小二乘法(PLS)对近红外光谱信息与样品的质构仪剪切力值进行了拟合,确定了最佳的光谱预处理方法、主成分数和波段范围。结果表明:所选98个羊肉样品的剪切力值分布范围为1.673~6.631 kg,其中75%以上的样品剪切力值在2~5 kg,基本覆盖了我国现有的肉羊嫩度值分布;在11 995~5 446 cm-1和4 601~4 246 cm-1的波段范围内,最佳主成分数为10,光谱经矢量归一法处理后,建立的羊肉嫩度模型精度最高,r2达到86.2%,RMSECV为0.445;用此模型对预测集29个样品进行预测,预测值与实测值的相关系数r达到0.87,预测平均偏差为0.385,RMSEP为0.524。  相似文献   

3.
提出利用微型近红外光谱仪、结合Y型光纤探头,在900~1 700 nm范围内对奶粉中蛋白质、脂肪含量进行快速、无损检测的漫反射光谱检测方法。基于Unscrambler 9.7化学计量学软件,选择合适的光谱波段,通过PLS算法分别建立了蛋白质、脂肪的校正模型,得到蛋白质、脂肪校正模型的决定系数R2分别为0.987和0.986,均方根误差RMSC分别为0.385和0.419。利用所建模型对预测样本数据集进行预测验证,得到蛋白质的标准差SEPProtein=0.768、脂肪的标准差SEPFat=1.109,表明所建模型具有较高的预测能力,已基本达到实用化要求。  相似文献   

4.
建立了牛肉基于TVB-N、菌落总数、pH值和肉色参数L*多个指标的储存期预测模型,利用可见近红外光谱(Vis/NIR)技术结合区间偏最小二乘(iPLS)和遗传算法(GA)建立了各个指标的PLS预测模型,实现了多指标综合无损快速预测4 ℃下牛肉的储存期。用iPLS和iPLS-GA提取有效波长变量建立PLS预测模型,以预测相关系数和预测标准差作为模型评价标准,结果表明用iPLS-GA选择变量建立的各个指标的PLS预测模型均优于全波段和iPLS组合的PLS模型。由多个指标的预测值和储存期的预测模型,对校正集和预测集样品储存期进行预测,其预测相关系数和标准差分别是0.903, 0.897和1.88, 2.24。说明利用光谱技术结合得出的储存期预测模型可以实现多指标综合预测牛肉储存期,为无损快速检测牛肉储存期或货架期提供了一种新方法。   相似文献   

5.
近红外高光谱图像结合CARS算法对鸭梨SSC含量定量测定   总被引:3,自引:0,他引:3  
高光谱数据量大、 维数高且原始光谱噪声明显、 散射严重等特征导致光谱建模时关键波长变量提取困难。 基于此,提出采用竞争性自适应重加权算法(CARS)对近红外高光谱数据进行关键变量选择。 鸭梨作为研究对象。 采用决定系数r2、 预测均方根误差RMSEP和验证集标准偏差和预测集标准偏差的比值RPD值进行模型性能评估。 基于选择的关键变量建立PLS模型(CARS-PLS)与全光谱变量建立的PLS模型进行比较发现CARS-PLS模型仅仅使用原始变量中15.6%的信息获得了比全变量PLS模型更好的鸭梨SSC含量预测结果,r2pre,RMSEP和RPD分别为0.908 2,0.312 0和3.300 5。 进一步与基于蒙特卡罗无信息变量MC-UVE和遗传算法(GA)获得的特征变量建立的PLS模型比较发现,CARS不仅可以去除原始光谱数据中的无信息变量,同时也能够对共线性的变量进行压缩去除,该方法能够有效地用于高光谱数据变量的选择。 结果表明,近红外高光谱技术结合CARS-PLS模型能够用于鸭梨可溶性固形物SSC含量的定量预测。 从而为基于近红外高光谱技术预测水果内部品质的研究提供了参考。  相似文献   

6.
Huang YY  Zhu LW  Ma HX  Li JH  Sun BQ  Sun Q 《光谱学与光谱分析》2011,31(10):2706-2710
利用近红外光谱分析技术结合定量偏最小二乘法对农大108玉米的纯度进行了定量测定,首先通过在农大108杂交种子加入不同量的母本178种子,获得纯度60%~100%范围内的样本123份,然后测定粉碎后样本的光谱,根据2:1的比例划分建模集和检验集。结果表明:6 000~10 000 cm-1为适宜的建模光谱范围,主成分为8时,建模集内部交叉验证的决定系数达96.61%、校正标准差(SEC)2.15%,平均相对误差(RSD)2.04%;检验集的决定系数达到97.67%,校正标准差(SEP)1.78%,平均相对误差(RSD)1.94%。采用该方法建模时,采用不同比例的建模样品和检验样品,建模集平均决定系数为96.21%,校正标准差2.29%,平均相对误差为2.81%。检验集的平均决定系数为95.75%,预测标准差2.23%,平均相对误差为2.73%,进一步证明模型的稳定性。  相似文献   

7.
X射线荧光光谱分析作为一种以化学计量学为基础的定量分析技术,所建立模型优劣对结果的预测准确性显得十分重要。竞争性自适应重加权算法(CARS)采用自适应重加权采样技术,利用交互验证选出互验证均方根误差(RMSECV)值最低原则,寻出最优变量组合。为了进一步提高PLS模型的解释和预测能力,将竞争性自适应重加权算法(CARS)与X射线荧光光谱分析技术相结合,对土壤中重金属元素铅和砷进行特征波长变量筛选后建立偏最小二乘(PLS)模型。首先,利用CARS算法对铅含量密切相关的波长变量进行筛选,当采样次数为26次时,筛选出60个有效波长点;对砷含量密切相关的波长变量进行筛选,当采样次数为34次时,筛选出19个有效波长点;然后对优选出的波长点利用PLS方法分别建立土壤中铅和砷含量定量分析模型,并与经连续投影算法(SPA)及蒙特卡罗无信息变量消除(MC-UVE)方法波长变量筛选后所建立的PLS模型进行比较。结果显示:铅的CARS-PLS模型的预测集决定系数(R2)、交互验证均方根误差(RMSECV)、预测均方根误差(RMSEP)和相对预测误差(RPD)分别为0.995 5,2.598 6,3.228和9.401 1,砷的CARS-PLS模型的预测集R2,RMSECV,RMSEP和RPD分别为0.989 9,3.013 2,2.737 1和8.211 6;两元素的CARS-PLS模型性能均优于全波段PLS,SPA-PLS和MC-UVE-PLS模型。基于CARS-PLS的算法可以有效筛选出X射线荧光光谱特征波长点,在简化了建模复杂程度的同时,提高了模型的准确性和稳健性。  相似文献   

8.
为了探讨应用近红外反射分析法测定水稻可能再转流物质的可行性,以种植于海南儋州的7个水稻品种为试验材料,在淀粉酶处理结合中性洗涤纤维法分析的基础上,应用近红外反射分析法建立预测水稻茎叶部和穗部可能再转流物质含量的校正模型。结果表明:采用偏最小二乘法回归(PLS1)建立的校正模型的预测效果较好,光谱预处理对改进校正模型没有显著效果;采用不做预处理+PLS1建立的茎叶部和穗部校正模型都具有较高的预测准确度,校正模型的外部验证结果茎叶部的决定系数为0.991 2、均方根误差为0.008 1,穗部的决定系数为0.961 1、均方根误差为0.022 6。  相似文献   

9.
王键  汪六三  王儒敬  鲁翠萍  黄伟  汪玉冰 《发光学报》2018,39(12):1785-1791
利用可见/近红外光谱分析仪得到复合肥的原始光谱,经过MSC和一阶导数预处理后,建立了复合肥中总氮含量的PLS模型,实现了复合肥中总氮含量的快速准确无损测量。通过选取不同范围波长建模,取得了预测决定系数(R2)、预测标准差(SRMSEP)、相对分析误差(KRPD)最好的基础波段。在基础波段的基础上,采用优选波长算法,获得了加入波长后的模型的预测决定系数和预测标准差图。通过分析,最终确定加入42个优选波长。实验结果表明,加入优选波长后的模型的预测决定系数由不加优选波长模型的0.760 4提高到了0.991 1,SRMSEP降低为原来的1/5,KRPD提高到原来的5倍。  相似文献   

10.
为了探究反射光谱检测水体中毒死蜱农药的可行性,使用由ASD公司的FieldSpecPro地物波谱仪构成的高光谱采集系统在室内、室外环境获取两种不同浓度区间的毒死蜱样品的光谱数据。基于偏最小二乘(PLS)和主成分分析(PCA)算法分别对毒死蜱样品光谱数据建立全波段定量模型,结果两种模型的预测能力均较高。通过相关性分析(CA)计算相关系数来选择毒死蜱样品光谱的特征波长,其中浓度区间为5~75 mg·L-1的室内、室外实验光谱的特征波长为388,1 080,1 276 nm和356,1 322,1 693 nm,浓度区间为0.1~100 mg·L-1的室内外实验样品光谱的特征波长为367,1 070,1 276,1 708 nm和383,1 081,1 250,1 663 nm。结合PLS算法建立样品特征波长光谱数据的定量模型,结果与全波段模型相比,浓度区间为5~75 mg·L-1的室内外实验光谱PLS特征波长模型的校正集决定系数R2C分别提高至0.987 5和0.999 2,预测集决定系数R2P分别提高至0.989 4和0.994 4,校正集均方根误差RMSEC分别降低为2.841和0.714,预测集均方根误差RMSEP分别降低为1.715和1.244;浓度区间为0.1~100 mg·L-1的室内外实验光谱特征波长PLS模型的校正集决定系数R2C分别提高至0.998 3和0.998 8,预测集决定系数R2P分别提高至0.998 4和0.999 0,校正集均方根误差RMSEC分别降低为1.383和1.186,预测集均方根误差RMSEP分别降低为1.510和1.229,验证集标准差与预测均方根误差的比值(RPD)有所增加,尤其是针对浓度区间为0.1~100 mg·L-1的实验,RPD值显著增加至21.7,说明基于特征波长建立的毒死蜱样品定量模型具有较高精度的预测能力,但是通过不同浓度区间范围的对比实验发现,ASD地物光谱仪对低浓度的毒死蜱溶液预测的相对误差偏大,存在客观上的检测下限。为了保证不同试验条件下的毒死蜱农药的特征波长都得到分析,增强模型使用的普适性与鲁棒性,根据特征波长选择出4个波段,即351~393,1 065~1 086,1 245~1 281和1 658~1 713 nm作为特征波段。特征波段模型的波长变量个数共38个,相比于全波段模型的432个波长变量,模型变量精简了91.2%,其中浓度区间为5~75 mg·L-1的室内外实验光谱PLS特征波段模型的R2C分别为0.993 7和0.987 8,R2P分别为0.979 8和0.998 2,RMSEC分别为1.690和2.516,RMSEP分别为1.987和0.659;浓度区间为0.1~100 mg·L-1的室内外实验光谱特征波段PLS模型的R2C分别为0.9882和0.9807,R2P分别为0.9391和0.9936,RMSEC分别为3.345和3.942,RMSEP分别为8.996和2.663,且四种实验情况下的模型RPD值均大于2.5,满足定量分析条件。因此采用高光谱采集系统对室内和室外环境中毒死蜱农药的快速检测具有一定的可行性,此研究结果对有机磷农药等面源污染物快速检测有实际的应用价值,可为农田水体有机磷农药快速检测仪器的开发提供理论基础。  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号