首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
许春光 《计算物理》1998,15(2):184-192
在研究弱入射激波遇到对称楔以后的马赫反射现象时,激波管实验不易测出很弱的接触间断,也不易捕捉到马赫反射与正规反射转换的条件。文章一方面研究了可压流体力学欧拉方程的数值方法,首先是用反扩散法改进接触间断的计算;另一方面根据格式粘性的特性和它引出的很微小的熵的变化规律来显示很弱的接触间断和反射激波。这样才易于将对三波点的分析推进一步。文[5,6]曾预言了一种反散波是连续的压缩波的新的激波反射类型。我们设想并根据计算初步确认这新类型反射实际应该是简单马赫反射,反射波虽弱仍是激波。  相似文献   

2.
沙莎  陈志华  张焕好  姜孝海 《物理学报》2012,61(6):64702-064702
激波绕过三角楔(Schardin问题)时会产生激波马赫反射与绕射、 三角楔尾涡与涡串等复杂物理现象. 本文利用三阶精度加权基本无振荡(WENO)格式、 结构化矩形网格的自适应加密方法与沉浸边界法对Schardin问题进行了数值模拟. 数值结果清晰地显示了激波与三角楔相互作用, 在楔面发生马赫反射以及在楔角绕射诱导主涡的过程, 并与Schardin等的实验结果及相关数值结果完全符合. 另外, 数值结果还详细反映了先前实验与数值结果没有详细讨论的主涡滑移层上的涡串生成机理, 以及激波与涡串相互作用和产生声波的过程.  相似文献   

3.
激波绕过三角楔(Schardin问题)时会产生激波马赫反射与绕射、 三角楔尾涡与涡串等复杂物理现象. 本文利用三阶精度加权基本无振荡(WENO)格式、 结构化矩形网格的自适应加密方法与沉浸边界法对Schardin问题进行了数值模拟. 数值结果清晰地显示了激波与三角楔相互作用, 在楔面发生马赫反射以及在楔角绕射诱导主涡的过程, 并与Schardin等的实验结果及相关数值结果完全符合. 另外, 数值结果还详细反映了先前实验与数值结果没有详细讨论的主涡滑移层上的涡串生成机理, 以及激波与涡串相互作用和产生声波的  相似文献   

4.
气相爆轰波在分叉管中传播现象的数值研究   总被引:1,自引:0,他引:1  
数值研究气相爆轰波在分叉管中的传播现象.用二阶附加半隐龙格-库塔法和5阶WENO格式求解二维欧拉方程,用基元反应描述爆轰化学反应过程,得到了密度、压力、温度、典型组元质量分数场及数值胞格结构和爆轰波平均速度.结果表明:气相爆轰波在分叉管中传播,分叉口左尖点的稀疏波导致诱导激波后压力、温度急剧下降,诱导激波和化学反应区分离,爆轰波衰减为爆燃波(即爆轰熄灭).分离后的诱导激波在垂直支管右壁面反射,并导致二次起爆.畸变的诱导激波在水平和垂直支管中均发生马赫反射.分叉口上游均匀胞格区和分叉口附近大胞格区的边界不是直线,其起点通常位于分叉口左尖点上游或恰在左尖点.水平支管中马赫反射三波点迹线始于右尖点下游.分叉口左尖点附近的流场中出现了复杂的旋涡结构、未反应区及激波与旋涡作用.旋涡加速了未反应区的化学反应速率.反射激波与旋涡作用并使旋涡破碎.反射激波与未反应区作用,加速其反应消耗,并形成一个内嵌的射流.数值计算得到的波系演变和胞格结构与实验定性一致.  相似文献   

5.
刘儒勋  魏勇 《计算物理》1986,3(2):183-193
本文提出马赫反射的一种简易、有效的数值模拟方法——分裂拟特征线法,并对平面激波碰到斜劈时所形成的马赫反射进行了模拟计算。具体格式设计灵活,程序实现容易,运算量和信息量比已有的其它方法都有很大的节省。计算结果表明,马赫反射图象和流场基本特征与已有的实验或计算结果比较,是比较吻合的。  相似文献   

6.
激波冲击R22重气柱所导致的射流与混合研究   总被引:3,自引:0,他引:3       下载免费PDF全文
沙莎  陈志华  薛大文 《物理学报》2013,62(14):144701-144701
基于大涡模拟, 结合五阶加权基本无振荡格式与沉浸边界法对激波自左向右与R22重气柱作用过程进行了数值模拟. 数值结果清晰地显示了激波诱导Richtmyer-Meshkov不稳定性所导致的重气柱变形过程, 并与Haas 和 Sturtevant 的实验结果符合. 另外, 结果还揭示了入射激波在气柱内右侧边界发生聚焦并诱导射流的过程, 以及在Kelvin-Helmhotz 次不稳定性作用下两个主涡滑移层形成次级涡的过程, 并分析了气柱变形过程中与周围空气的混合机理. 最后, 通过改变反射距离对反射激波与不同变形阶段的气柱的再次作用过程进行了研究. 结果表明: 当激波反射距离较长时, 反射激波与充分变形后的气柱作用, 使其在流向方向上进一步被压缩; 而当激波反射距离较短时, 反射激波会在气柱内发生马赫反射, 两个三波点附近产生两个高压区, 当其传播至气柱左侧边界时对气柱边界造成冲击加速, 诱导两道向左传播的反向射流. 关键词: Richtmyer-Meshkov不稳定性 R22重气柱 反射激波 射流  相似文献   

7.
用自行设计激波管点火测试技术,实验研究了温度范围760-1380K间入射激波诱导下环氧丙烷的点火机理。利用激波管压力传感器测定了H*(486.1) 和O (470.5nm)随激波诱导强度变化的点火时间特征。实验结果表明:在低马赫数下氢氧自由基出现时间较接近,1.5-2.5马赫间随激波诱导强度增大而线性减小;而马赫大于2.5后,氧自由基的出现时间迅速减小,是由于高活化能的氧自由基的点火时间对强激波较敏感,而诱导强度大于3.5马赫后对两者点火影响区别就下明显了。实验数据将有益于含能材料点火时间的研究。  相似文献   

8.
用自行设计激波管点火测试技术,实验研究了温度范围760-1380K间入射激波诱导下环氧丙烷的点火机理。利用激波管压力传感器测定了H*(486.1) 和O (470.5nm)随激波诱导强度变化的点火时间特征。实验结果表明:在低马赫数下氢氧自由基出现时间较接近,1.5-2.5马赫间随激波诱导强度增大而线性减小;而马赫大于2.5后,氧自由基的出现时间迅速减小,是由于高活化能的氧自由基的点火时间对强激波较敏感,而诱导强度大于3.5马赫后对两者点火影响区别就下明显了。实验数据将有益于含能材料点火时间的研究。  相似文献   

9.
 采用大涡模拟方法,对入射激波及其反射激波诱导球形重气泡的变形失稳过程进行了三维数值模拟,利用已有实验验证了计算模型的可靠性,重点考察了反射激波与已经失稳的气泡界面的再次作用,讨论了涡环的形成及其三维失稳的过程。研究结果显示:入射和反射激波与球形重气泡作用产生斜压效应,会在流场中产生旋转方向截然相反的多个涡环;反射激波诱导的涡环具有较小的强度,故更加容易失稳,甚至能完全形成具有流向涡量的复杂小尺度涡结构。  相似文献   

10.
在激波管中实验研究了二维V形空气/SF6界面在入射激波和反射激波作用下的Richtmyer-Meshkov不稳定性发展规律。实验中采用细针约束肥皂膜的方法形成了精确可控的V形初始界面,利用高速纹影技术获得了受冲击的V形界面演化图像。通过改变初始V形界面顶角表征初始扰动振幅,获得了不同初始振幅条件下的波系和界面演化。结果表明,不同顶角下,入射激波冲击过后,界面形态表现出明显的差异,进一步导致反射激波冲击后界面形态的多样性。当顶角较小时,反射激波在界面内外引起复杂的波系结构,从而对界面形态及反相现象产生较大的影响。反射激波的二次作用使流场快速进入湍流混合状态,并且顶角较小时流场趋于各向同性发展。对反射激波作用后的界面混合宽度进行了测量,并与理论模型预测结果进行对比,发现理论模型不能很好地预测混合宽度的增长,主要是因为反射激波作用之后流场并没有完全达到湍流混合状态,不符合理论模型的适用条件。  相似文献   

11.
实验研究复杂波形结构引起平面界面变形和反射激波冲击下的R-M不稳定性的问题.在竖直激波管中生成稳定的N2/SF6平面界面,激波在圆柱绕射后,冲击平面界面,由此研究复杂激波引起的界面变形.平面激波在圆柱绕射后的流场,演化成具有初始入射波、三波点、弯曲反射波、Mach波和Mach反射产生的滑移线等复杂结构.研究复杂结构激波对界面的作用,对认识界面扰动的生成具有较大帮助.绕柱激波冲击后,平面界面仅在两对滑移线内部发生变形.绕柱激波冲击界面后,两对滑移线将界面分成"内界面"和"外界面",界面变形形态同滑移线和界面相交位置相关.反射激波二次冲击下,界面扰动的增长与Jacobs-Sheeley涡量模型较吻合.   相似文献   

12.
半球形固体浸没透镜显微系统的透射光场研究   总被引:2,自引:2,他引:0  
张耀举  叶雪华 《光子学报》2006,35(11):1697-1700
应用高数值孔径系统的矢量衍射理论研究了半球形固体浸没透镜(SIL)球面表面的反射对SIL系统透射场的影响.研究结果表明,半球形SIL球面表面的反射对SIL显微系统的透射光强产生很大的影响.然而,这种反射不改变半球形SIL显微系统的分辨率.SIL球面介质界面材料的折射率失配越大,透射光强减小越多.在SIL的球面表面涂上减反膜或者在物镜和SIL之间填充折射率较大(但比SIL的折射率小)的介质可以提高系统的透射光强.  相似文献   

13.
激波聚焦反射的实验和数值研究   总被引:1,自引:0,他引:1       下载免费PDF全文
 采用高速摄影技术和数值模拟方法,对入射激波在两种不同形状的抛物形反射器表面聚焦和反射的过程进行了研究,得到了激波聚焦反射过程的波系结构的实验阴影照片和数值计算结果,两者符合得很好。对激波聚焦形成的气体动力学焦点的特性进行了分析,结果表明,入射激波在两种反射器反射后聚焦所形成的气体动力学焦点均是由三波点在轴心处的会聚所导致的,气体动力学焦点位于相应的反射器壁面的几何焦点附近。不同的反射器中,激波聚焦前后的波系结构也不同,对较浅的反射器,入射激波反射前在反射器壁面形成了弓形激波,反射之后需要相对较长的时间完成聚焦,形成聚焦反射激波之后弓形激波仍未相交;对较深的反射器,入射激波反射后在更短的时间内聚焦,聚焦时弓形激波已经相交,聚焦反射激波之后的流场波系结构更加复杂。  相似文献   

14.
结合数值模拟和理论分析,研究凝聚介质中斜激波反射.采用龙格-库塔控制体积间断有限元方法,数值求解"刚性气体"状态方程形式下的欧拉方程组;理论分析凝聚介质中斜激波反射模式;运用激波极曲线理论,给出典型激波强度下正规反射向非正规反射过渡的临界角及波后状态.比较数值模拟结果和激波极曲线理论分析结果,得到典型弱、强斜激波的反射图像.  相似文献   

15.
蔡罕龙  李素循 《计算物理》1995,12(3):363-368
使用计算流体动力学的方法,对经典的运动激波绕射现象做数值模拟,研究了一类复杂激波反射问题一入射的运动斜激波绕射现象.给出一组运动斜激波绕射波纹壁面的非定常过程的模拟结果。计算结果显示出由运动斜激波绕射诱导的多波干扰产生的复杂流场结构。  相似文献   

16.
当斜激波与多种物质分界面相互作用时,会出现Richtmyer-meshkov不稳定性现象,以及由于斜压性导致的涡量产生。研究激波与物质界面相互作用在燃料混合和激光质性约束聚变方面有着重要意义。有研究平面界面扰动演化的实验,研究柱面和球面界面的实验。数值模拟方面的研究也有很多。但激波与界面相互作用的理论研究很不完善,如Richtmyer。提出的不稳定性线性理论仅对激波与穿过界面很短的时间内有效,Sturtevant就发现实验结果与线性理论相差很大。  相似文献   

17.
在矩形截面的爆轰管道中,对C2H2+2.5O2+8.17Ar和C2H2+5N2O在CJ爆轰状态下经过不同楔面所发生的马赫反射的影响因素进行了实验研究。实验中,由烟膜记录爆轰波马赫反射的胞格结构转变过程;采用纹影技术捕捉爆轰波马赫反射波阵面的不稳定性及波后流场分布。实验结果表明:两种实验气体在爆轰波马赫反射过程中均存在由CJ区域向过驱区域转变的胞格结构;初始压力对楔面与马赫反射三波点轨迹线之间的夹角(χ)影响明显,楔角θw对χ的影响随θw的增大而增大;根据实验测得的θw+χ与θw之间的关系,可知爆轰波马赫反射三波点轨迹线的斜率随着θw的增大而增大,与CJ区域内胞格轨迹线的相交距离也更短,使马赫杆后的过驱度升高。另外,不稳定气体C2H2+5N2O的不稳定性高于稳定气体C2H2+2.5O2+8.17Ar,导致二者的爆轰波马赫反射行为存在较大的差异。  相似文献   

18.
在矩形截面的爆轰管道中,对C2H2+2.5O2+8.17Ar和C2H2+5N2O在CJ爆轰状态下经过不同楔面所发生的马赫反射的影响因素进行了实验研究。实验中,由烟膜记录爆轰波马赫反射的胞格结构转变过程;采用纹影技术捕捉爆轰波马赫反射波阵面的不稳定性及波后流场分布。实验结果表明:两种实验气体在爆轰波马赫反射过程中均存在由CJ区域向过驱区域转变的胞格结构;初始压力对楔面与马赫反射三波点轨迹线之间的夹角(χ)影响明显,楔角θw对χ的影响随θw的增大而增大;根据实验测得的θw+χ与θw之间的关系,可知爆轰波马赫反射三波点轨迹线的斜率随着θw的增大而增大,与CJ区域内胞格轨迹线的相交距离也更短,使马赫杆后的过驱度升高。另外,不稳定气体C2H2+5N2O的不稳定性高于稳定气体C2H2+2.5O2+8.17Ar,导致二者的爆轰波马赫反射行为存在较大的差异。  相似文献   

19.
本文通过分析马赫2.25的斜激波/平板边界层干涉的DNS数据,对其中的湍动能输运特性进行了研究,表明压力梯度使湍动能在分离区增强。在此基础上,本文用当地密度、速度和动力黏性系数对压力梯度进行了无量纲化,将无量纲化的压力梯度引入到Spalart-Allmaras(S-A)模型的生成项和耗散项中,得到了改进的S-A模型。在超音速斜激波/边界层干涉和压缩角流动中的计算表明,改进提高了S-A模型对激波/边界层干涉流动的预测准确度。  相似文献   

20.
用激波管方法研究了氟原子亲电动力学.利用反射激波加热获得离子化气体,随后经冷却速度达106K/s的强稀疏波冷却,离化气体将经历以电子复合为主的非平衡过程.用Langmuir静电探针监测反射激波后离子浓度随时间的演变,分析了探针工作状态,引入了探针鞘层内的弹性散射修正.测定了温度在1200~2200K以氩气为碰撞第三体的F原子与电子复合速率系数,讨论了温度依赖关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号