首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用简单的微乳液-微波法合成大小和形貌可控的Y2O3∶Eu3+纳米棒晶体。XRD结果表明,所制备样品为Y2O3∶Eu3+纯相,属于体心立方晶系。TEM结果表明,随着水乳比ω0从5变化到35时,粒子发光粉的形状由纳米颗粒状变为纳米棒,纳米棒的直径约为30~50 nm,纳米棒长约为200~300 nm。激发光谱和发射光谱分析表明,最大的激发带是位于254 nm的Eu3+-O2-电荷迁移带。最大发射峰位于611 nm,属于Eu3+的特征发射。Y2O3∶Eu3+纳米发光粉的发光强度随着ω0的增加而增强。发光寿命分析表明Y2O3∶Eu3+纳米棒中Eu3+的发光寿命为2.03 ms。在阴极射线发光真空装置中测得的I-V曲线表明Y2O3∶Eu3+纳米棒薄膜的启动电压仅1 300 V。同时,在2 000 V外加电压下可以清楚地观察到Y2O3∶Eu3+纳米棒的阴极射线发光为Eu3+离子的特征红光。  相似文献   

2.
为了满足高能物理和核物理领域在探究一些超快物理事件时,对兼顾高时间和高空间分辨的X射线闪烁转换屏的迫切需求,本文利用磁控溅射和水热反应法制备了ZnO:In纳米棒阵列X射线闪烁转换屏,并对其进行氢气氛下的等离子处理优化其闪烁发光性能.X射线激发发射谱显示ZnO:In纳米棒阵列具有395 nm的紫外发光和450—750 nm的可见发光两个发光峰,同时表明氢气氛等离子体处理可显著增强ZnO:In纳米棒阵列的紫外发光,抑制其可见发光.发光衰减时间测量表明,ZnO:In纳米棒阵列紫外发光衰减时间在亚纳秒级,其可见发光衰减时间在纳秒级,两者均可满足高时间分辨的X射线探测需求.在上海同步辐射光源的X射线空间分辨率测试表明,在能量为20 keV的X射线光束辐照下,厚度为12μm的ZnO:In纳米棒阵列作为X射线闪烁转换屏可达到1.5μm的系统空间分辨率.本研究表明利用ZnO:In纳米棒阵列作为X射线闪烁转换屏是实现兼顾高时间和高空间分辨的X射线探测与成像的一种可行方案.  相似文献   

3.
利用高温固相反应法合成了Eu3 掺杂的MCeO3(M=Sr,Ba)发光粉末样品,采用X射线衍射技术和荧光光谱等测试手段分别对其物相组成和发光性质进行了研究。X射线衍射结果显示,Eu3 离子容易替代MCeO3晶格中M2 离子的位置。荧光光谱测试结果表明,Eu3 掺杂的SrCeO3和BaCeO3样品在紫外波段存在着非常宽的吸收带,峰值分别位于311和320nm左右,它们属于Ce4 -O2-的电荷迁移带,SrCeO3和BaCeO3基质与Eu3 离子之间存在着能量转移。在MCeO3∶Eu3 样品中,Eu3 的发射主要来自于5D0激发态能级,其中以磁偶极跃迁5D0—7F1发射强度为最大;此外样品中还存在着较高的5D1激发态能级的辐射跃迁。SrCeO3∶Eu3 样品的发射强度远大于BaCeO3∶Eu3 样品。  相似文献   

4.
以醋酸锌、氧化铕、氢氧化钠为主要原材料,利用共沉淀法制备ZnO∶Eu3+纳米晶体.在X射线衍射谱中,只观察到氧化锌的峰,没有观察到氧化铕的特征峰.比较了ZnO和ZnO∶Eu3+拉曼光谱,在ZnO∶Eu3+样品拉曼光谱中观察到新的局部振动模.这些现象表明铕离子已经进入氧化锌晶格中.SEM形貌显示Eu3+离子掺入使ZnO晶...  相似文献   

5.
掺铟氧化锌纳米阵列的制备、结构及性质研究   总被引:1,自引:0,他引:1       下载免费PDF全文
李会峰  黄运华  张跃  高祥熙  赵婧  王建 《物理学报》2009,58(4):2702-2706
通过碳热辅助化学气相沉积法,用Au做催化剂在850℃下制备了铟掺杂的氧化锌(In/ZnO)纳米阵列.纳米棒的尺寸均匀,表面光滑,直径约为400 nm,长为2—3 μm.能量色散谱和X射线光电子能谱分析表明, 六棱柱状的纳米阵列中成功地进行了In 的掺杂,含量约为08%.室温光致发光谱显示掺杂后的紫外发射峰位有红移,峰的半高宽变大, 没有观察到绿光发射峰位.拉曼光谱显示出ZnO的峰位有不同程度的偏移,并且有新的峰位出现,这表明In的掺杂有效地取代了部分Zn的晶格. 关键词: In掺杂 ZnO 纳米阵列 光致发光  相似文献   

6.
利用共沉淀法制备了纳米晶ZrO2∶Eu3+发光粉体。室温下观测到Eu3+离子的强特征发射,主发射分别在590, 604nm处。观测到Eu3+离子电荷迁移态,并与其他研究系统观测到的Eu3+离子电荷迁移态基本相同。比较了不同掺杂比例和不同煅烧温度对Eu3+离子特征发射的影响。其他条件相同掺杂比例不同时,当n(Eu3+ )∶n(Zr4+ )为6%样品发射相对最强。而当掺杂比例相同改变煅烧温度时, 600℃煅烧的样品发光较强。分析了Eu3+离子对ZrO2 晶相的稳定作用。铕掺杂的纳米晶二氧化锆样品,随着样品煅烧温度的升高,样品的晶相结构只发生了细微变化。而纯纳米晶二氧化锆在煅烧温度升高时晶相发生了明显的变化。说明Eu3+离子起到了稳定ZrO2 基质晶相的作用。研究发现二氧化锆掺铕样品有较高的浓度猝灭,发射较强且色纯度较好。  相似文献   

7.
以三价铕离子为单一铕源,采用化学共沉淀法制备了二价铕与三价铕共掺杂的SrSO_4荧光粉体材料.通过X射线衍射仪、扫描电镜、光致发光谱仪对该荧光粉的晶体结构、形貌、光致发光特性进行分析.研究发现:所合成的SrSO_4粉体材料为二价铕与三价铕共掺杂的SrSO_4微晶,其大小在1~10μm之间.在325nm的紫外光激发下该微晶能发射很强的绛红色荧光,其光致光谱由一个位于379nm的宽发光带和位于575nm、591nm和612nm的三个窄发光带组成.基于局域密度近似的密度泛函理论,计算了SrSO_4的能带结构及其氧缺陷能级,然后以能带结构为基础讨论了二价铕与三价铕共掺杂SrSO_4的发光机理.峰位于379nm的宽发光带可归因于SrSO_4微晶中二价铕离子发光中心的4f~65d~1→4f~7的电子跃迁,而三个红色窄发光峰分别来自三价铕离子~5D_0→~7F_0,~5D_0→~7F_1,~5D_0→~7F_2的电子跃迁.实验表明二价铕与三价铕共掺杂的SrSO_4能作为高效的绛红色荧光粉.  相似文献   

8.
单民瑜  陈卫星  王丽玲  刘秀兰 《发光学报》2012,33(11):1204-1208
在PVA溶液中制备ZnO∶Cu纳米粉体的前驱体,经过煅烧获得ZnO∶Cu纳米粉体,考察煅烧温度对制备过程及发光性能的影响。利用XRD、TEM分析了产物的结构和形貌,XRD分析结果表明,当煅烧温度高于500℃时,可以使PVA完全分解,制备出具有六角纤锌矿结构的ZnO∶Cu粉体。TEM结果表明,粉体呈球形,大小均匀,分散性好,平均粒径为20~25 nm。在342 nm波长光的激发下,在ZnO∶Cu的室温PL光谱中可以观察到两个中心波长位于458 nm和486 nm的较强的蓝光发射峰,经400℃煅烧处理的ZnO∶Cu纳米粉体的蓝光发射最强。煅烧后的ZnO∶Cu只有微弱的绿光发射(510~530 nm),Cu的掺杂使ZnO的绿光发射变为蓝光发射。蓝紫光的发射波长随煅烧温度的升高产生明显的红移,由300℃时的404 nm红移至600℃时的422nm,发射强度随温度升高先增大后减小。  相似文献   

9.
采用水热法制备了空心半球形SrWO4及Tb3+、Eu3+掺杂的SrWO4球形颗粒,利用XRD、SEM、荧光光谱等研究其物相、形貌及发光性能。未掺杂的SrWO4具有空心半球形形貌,属四方晶系。SrWO4∶Tb3+及SrWO4∶Eu3+为球形颗粒,其相结构与未掺杂样品类似,形貌从空心半球形转变为球形颗粒。随着Tb3+掺杂浓度的增加,SrWO4∶Tb3+的形貌从球状变成由纳米棒构成的花状;随着Eu3+掺杂浓度的增加,样品中出现了单斜相的Eu2WO6,其形貌也发生了明显的变化。在紫外光激发下,SrWO4∶Tb3+及SrWO4∶Eu3+的发射光谱由钨酸根的宽带发射和掺杂离子的特征发射组成,分别表现出绿光和红光发射。Tb3+的最佳掺杂摩尔分数为3%,Eu3+的最佳掺杂摩尔分数为25%。  相似文献   

10.
ZnO是一种优良的直接宽带隙半导体发光材料(Eg=3.4 eV),具有优异的晶格、光学和电学性质,稀土离子掺杂浓度和热处理温度对ZnO∶Re3 纳米晶发光强度、峰位变化等光学性质具有重要影响.利用溶胶-凝胶法(Sol-Gel),在不同退火温度下,制备了不同浓度的ZnO∶Tb3 纳米晶.室温下,测量了样品的X射线衍射谱(XRD)、光致发光谱(PL)和激发谱(PLE).观察到纳米ZnO基质在520 nm附近宽的绿光可见发射和稀土Tb3 在485,544,584和620 nm附近的特征发射.通过ZnO基质可见发射强度和稀土Tb3 特征发射强度随Tb3 掺杂浓度、退火温度的变化关系,获得了5D4→7F5跃迁的绿色主发射峰最强的样品制备工艺参数,其退火温度为600℃、掺杂浓度为4 at%;给出了稀土Tb3 的激发态5D4→7F6(485 nm),5D4→7F5(544 nm)和5D4→7F4(584 nm)的发射机制;证实了稀土Tb3 与纳米ZnO基质之间存在双向能量传递.  相似文献   

11.
采用高温固相法制备了KBaPO4:Eu3+红色发光材料,研究了Eu3+掺杂浓度、电荷补偿剂等对材料发光性质的影响,并利用X射线衍射及光谱等技术对材料的性能进行了表征.研究结果显示:在400 nm近紫外光激发下,材料呈多峰发射,分别由Eu3+的5D0→7FJ(J=0,1,2,3,4)能级跃迁产生,主峰位于621 nm|监测621 nm发射峰,所得激发光谱由O2-→Eu3+电荷迁移带(200~350 nm)和f-f高能级跃迁吸收带(350~450 nm)组成,主峰位于400 nm|改变Eu3+掺杂浓度,KBaPO4∶Eu3+材料的发射强度随之改变,Eu3+浓度为5 mol%时,强度最大|依据Dexter理论,得知引起浓度猝灭的原因为电偶极-电偶极相互作用|添加电荷补偿剂,可增强KBaPO4∶Eu3+材料的发射强度,其中以添加Li+,Cl-时,材料发射强度提高最明显.  相似文献   

12.
用简单的微乳液-微波法合成大小和形貌可控的Y2O3:Eu3+纳米棒晶体.XRD结果表明,所制备样品为Y2O3:Eu3+纯相,属于体心立方晶系.TEM结果表明,随着水乳比ω0从5变化到35时,粒子发光粉的形状由纳米颗粒状变为纳米棒,纳米棒的直径约为30~50 nm,纳米棒长约为200~300 nm.激发光谱和发射光谱分析表明,最大的激发带是位于254 nm的Eu3+-O2-电荷迁移带.最大发射峰位于611 nm,属于Eu3+的特征发射.Y2O3:Eu3+纳米发光粉的发光强度随着ω0的增加而增强.发光寿命分析表明Y2O3:Eu3+纳米棒中Eu3+的发光寿命为2.03 ms.在阴极射线发光真空装置中测得的I-V曲线表明Y2O3:Eu3+纳米棒薄膜的启动电压仅1 300 V.同时,在2 000 V外加电压下可以清楚地观察到Y2O3:Eu3+纳米棒的阴极射线发光为Eu3+离子的特征红光.  相似文献   

13.
以ZnS和金属Zn粉末混合物为蒸发源以及金属Zn片为衬底,利用热蒸发气相沉积方法,在弯曲的金属Zn微球表面上,成功地获得了ZnO亚微米棒阵列结构。场发射扫描电镜研究表明:在弯曲的Zn微球表面,能自组织地生长出大量的截面为六边形的ZnO亚微米棒,这些亚微米棒的平均直径为500nm,长约1μm。棒的顶部是平滑的。能量散射X射线谱结果表明:合成的产品只存在Zn和O两种元素,其成分比例接近1∶1。没有观察到S元素。光致发射(PL)光谱显示:在387nm紫外波长处,出现一个强的半峰全宽为16nm的窄发光峰,可归属于ZnO的近带边发光,而509nm左右较弱的宽峰则源于界面缺陷态发光。这些研究结果说明我们所合成的这种ZnO亚微米棒阵列材料在紫外受激发射器件方面有着潜在的应用价值。  相似文献   

14.
利用微乳液水热法制备出GdF3∶Eu3+纳米晶及纳米棒。用X射线粉末衍射(XRD)和透射电子显微镜(TEM)等手段对材料的结构、形态及粒径大小等进行了表征。室温下真空紫外(VUV)光谱及荧光光谱表明GdF3∶Eu3+纳米晶中的Gd3+离子吸收一个光子,并将能量分两步传递给Eu3+,发生了双光子发射。从各跃迁的积分强度和量子效率表达式可以得到材料在160 nm紫外光激发下的量子效率约为170%。  相似文献   

15.
利用高温固相反应法合成了Eu3 掺杂的MCeO3(M=Sr,Ba)发光粉末样品,采用X射线衍射技术和荧光光谱等测试手段分别对其物相组成和发光性质进行了研究.X射线衍射结果显示,Eu3 离子容易替代MCeO3品格中M2 离子的位置.荧光光谱测试结果表明,Eu3 掺杂的SrCeO3和BaCeO3样品在紫外波段存在着非常宽的吸收带,峰值分别位于311和320 nm左右,它们属于Ce4 -O2-的电荷迁移带,SrCeO3和BaCeO3基质与Eu3 离子之间存在着能量转移.在MCeO3:Eu3 样品中,Eu3 的发射主要来自于5D0激发态能级,其中以磁偶极跃迁D0-7F1发射强度为最大;此外样品中还存在着较高的5D1激发态能级的辐射跃迁.SrCeO3:Eu3 样品的发射强度远大于BaCeO3:Eu3 样品.  相似文献   

16.
通过熔融淬火和后续热处理,成功制备了Tb~(3+)掺杂含LaF_3纳米晶透明锗酸盐微晶玻璃。详细研究了所制备的玻璃和微晶玻璃的发光性质。X射线衍射结果表明,玻璃基体中析出的晶相为纯LaF_3晶体,晶粒尺寸在16~21 nm之间。在377 nm紫外光和X射线激发下,Tb~(3+)掺杂含LaF_3纳米晶的微晶玻璃比Tb~(3+)掺杂的锗酸盐玻璃表现出更强的绿光发射,且绿光发射强度随热处理温度升高和时间的延长而增强。微晶玻璃在X射线激发下的最大积分发光强度约为商用闪烁晶体Bi_4Ge_3O_(12)的40.3%。本研究表明,掺Tb~(3+)含LaF_3纳米晶锗酸盐微晶玻璃在X射线探测中具有潜在的应用前景。  相似文献   

17.
何大伟  刘春棠 《发光学报》2006,27(6):887-890
合成了系列2(Ba1-xSrxO) (1-y)P2O5·yB2O3∶Eu2+样品,研究了样品在长波紫外区域的激发光谱和发射光谱.从激发谱可以看出2(BaO)(1-y)P2O5·yB2O3∶Eu2+在300~380 nm附近区域有很强的吸收带,在380 nm 紫外光激发下,2(BaO)·(1-y)P2O5·yB2O3∶Eu2+的发射带位于400~430 nm;在2(Ba1-xSrxO)-(1-y)P2O5·yB2O3∶Eu2+的系列样品中,当x>0.2时,随着x的增大,基质晶格在330~380 nm吸收带整体向低能方向移动了40 nm;在147 nm 激发下的发射谱是主峰值位于478 nm的蓝绿光发射.  相似文献   

18.
采用溶胶凝胶模板法制备红色长余辉发光材料Y2O2S∶Eu3+,M2+(M=Mg,Ca,Sr,Ba),Ti4+纳米阵列,利用X射线衍射、扫描电子显微镜和荧光分光光度计、照度计分别研究了不同二价离子掺杂下所合成样品的物相、形貌及发光性能。结果表明:样品排列整齐有序,管径大小统一;不同的二价离子种类没有改变晶体结构和发射峰的位置,但对余辉性能有较大的影响。用324 nm波长光激发样品,由于Eu3+的5D0→7F2跃迁,最强的红色发射峰位于626 nm处;不同离子掺杂样品的余辉性能按Ba2+、Ca2+、Sr2+、Mg2+的顺序递加,其中二价离子为Mg2+时,余辉时间长达287 s(≥1 mcd/m2),表现出最佳的余辉性能。  相似文献   

19.
采用高温固相法在N2-H2还原气氛下合成了一系列Sr3(PO4)2∶Eu2+蓝色荧光粉,通过X射线衍射仪(XRD)、荧光光谱仪(PL)对荧光粉的晶体结构、激发和发射光谱进行了表征。结果表明:微量的Eu2+掺杂不会改变其晶体结构;Sr3(PO4)2∶Eu2+荧光粉在310~390nm范围内可以有效的被激发,激发峰位于359nm;发射光谱为主峰位于438nm宽带发射(带宽约为150nm),对应于Eu2+的4f65d1→4f7跃迁.通过高斯拟合发现,Eu2+至少占据了Sr3(PO4)2两种不同的Sr2+格位,形成两个发光中心(430和459nm).当Eu2+的掺杂浓度为7%时,其具有最大的发光强度,继续增大Eu2+的掺杂浓度,Sr3(PO4)2∶Eu2+的发射光谱会出现浓度猝灭现象,且其发射峰会随着铕离子浓度增加而发生红移。Sr3(PO4)2∶Eu2+荧光粉在近紫外区有着强而宽的吸收带,与近紫外LED芯片发射相匹配,相对发光强度是蓝色荧光粉BaMgAl10O17∶Eu2+(BAM)的1.3倍,是一种很有前途的白光LED用蓝色荧光粉材料。  相似文献   

20.
王长远  杨晓红  马勇  冯媛媛  熊金龙  王维 《物理学报》2014,63(15):157701-157701
采用水热法制备了ZnO和不同掺杂浓度的ZnO:Cd纳米棒,通过SEM,XRD、拉曼光谱等的分析,研究了ZnO和ZnO:Cd的微结构并测试分析了其光致发光特性.结果表明,ZnO和ZnO:Cd纳米棒呈六角纤锌矿结构,Cd掺杂使得纳米棒体积更小.由于内部张应力的影响,Cd掺杂使得材料光学带隙减少.当掺杂浓度为2%时,合成的材料光致发光谱中出现了位于2.67 eV处,由导带底和Zn空位(VZn)缺陷能级跃迁造成的蓝光发射峰,并且Cd的掺入使得位于2.90 eV附近的紫光发射峰强度增强,对于研究ZnO蓝紫发光器件具有重要的意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号