首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
合成了4种吡嗪铱配合物,用质谱和1H NMR对配合物结构进行了表征,通过紫外-可见吸收光谱和光致发光光谱对其光物理性质进行了研究。结果表明:4种铱配合物都出现了金属-配体电荷转移(MLCT)吸收峰。铱配合物1[(DFMPPZ)_2Ir(pic)]、2[(DFMPPZ)_2Ir Cl(PPh_3)]、3[(DFMPPZ)_2Ir(CN)(PPh_3)]和4[(DPPF)_2Ir(acac)]的发射波长分别为528,536,535,561 nm,都是潜在的黄、绿色磷光材料。以铱配合物4为客体材料,制备了结构为ITO/Mo O_3(1 nm)/CBP(35 nm)/CBP∶Ir(15 nm)/TPBi(50 nm)/Li F(1nm)/Al(100 nm)的一系列不同掺杂浓度的器件,器件的发射波长为567 nm,最大亮度达到32 110 cd·m-2,最大电流效率为32.4 cd·A-1,最大功率效率为28.2 lm·W-1。  相似文献   

2.
通过对2,4⁃2R⁃苯基⁃4⁃甲基喹啉主配体进行修饰,在苯基空间位阻较小的2位和4位引入供或吸电子能力的取代基(甲基,Me或甲氧基,MeO),分别合成了2种铱磷光配合物(2,4⁃2Me⁃mpq)_(2)Ir(acac)和(2,4⁃2MeO⁃mpq)_(2) Ir(acac),采用元素分析、核磁共振谱和单晶X射线衍射对其组成和化学结构进行了表征与确认。它们的光致发光光谱发射波长分别为610 nm和580 nm,光致发光量子产率分别为75%和80%,HOMO/LUMO能级差分别为2.04 eV和2.19 eV。以纯红光发射的磷光配合物(2,4⁃2Me⁃mpq)_(2)Ir(acac)为客体材料,制备了结构为ITO/TAPC(30 nm)/CBP∶(2,4⁃2Me⁃mpq)_(2)Ir(acac)(30 nm)∶x%/TPBi(30 nm)/Liq(2 nm)/Al的OLED器件,并优化了掺杂浓度,在10%的优化浓度下实现了高效红光OLED发光。器件的发射波长为607 nm,CIE坐标为(0.63,0.37),最大亮度为25980 cd/m^(2),电流效率为23.11 cd/A,外量子效率(EQE)高达20.28%。  相似文献   

3.
合成了一种新型的室温天蓝色磷光发射材料双(2-二苯基磷苯基)醚碘合铜(Ⅰ)([(POP)CuI]2)配合物。通过红外光谱、X-射线单晶衍射确定其分子结构,并对其光电特性进行了详细研究。结果表明:[(POP)CuI]2为二聚体结构,主要吸收峰为227,268,291 nm,最大发射峰为475 nm,光学带隙为2.93 eV。以[(POP)CuI]2作为客体掺杂在主体CBP中作为发光层,制备了结构为ITO/NPB(30 nm)/CBP∶[(POP)CuⅠ]2(30 nm,8%)/BAlq(10 nm)/Alq3 (30 nm)/LiF(1 nm)/Al(200 nm)的器件,其电致发光峰为476 nm,最大亮度为9 539 cd/m2,最大电流效率为1.9 cd/A。  相似文献   

4.
一种嘧啶铱(Ⅲ)配合物的结构及光电性质研究   总被引:1,自引:1,他引:0  
合成了一种铱配合物(DFPPM=2-(2,4-二氟苯基)嘧啶,acac=乙酰丙酮),利用 X 射线单晶衍射仪测定了该化合物的晶体结构。利用紫外-可见吸收光谱、发射光谱对其光物理性质进行研究。结果表明:(DFPPM)2 Ir(acac)的单晶结构属于三斜晶系,P-1空间群,晶胞参数a=14.444 4(7)nm,b=18.047 9(10)nm,c=19.220 0(9)nm,α=113.115(5)°;,β=90.453(4)°;,γ=90.989(4)°;,V=4 607.0(4)nm3。(DFPPM)2 Ir(acac)在二氯甲烷溶液中的发射峰为 496 nm。以(DFPPM)2 Ir(acac)为客体材料,制备了结构为ITO/NPB(40 nm)/CBP:(DFPPM)2Ir(acac)(质量分数10%,30 nm)/TPBi(15 nm)/Alq3(50 nm)/Mg:Ag(150 nm,10:1)/Ag(10 nm)的器件,器件的发射峰位于494 nm,最大亮度达到21 400 cd/m2,最大电流效率为12.0 cd/A,最大功率效率为 5.4 lm/W。  相似文献   

5.
采用不同的真空热梯度升华条件,获得了不同纯度的乙酰丙酮酸二(2-苯基吡啶)铱Ir(ppy)2(acac)。以不同纯度Ir(ppy)2(acac)为客体材料,制备了结构为ITO:MoO3/CBP/CBP:Ir(ppy)2(acac)/TPBi/LiF:Al的有机发光二极管(OLEDs),其中CBP和TPBi分别是4,4'-二(9-咔唑)联苯和1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯。评价了不同纯度磷光铱配合物制备的器件的电致发光性能,探索了磷光铱配合物纯度对器件性能的影响。结果表明:Ir(ppy)2(acac)升华后可以提高器件的稳定性,纯度高的材料可以在较低的掺杂浓度下获得较高的发光效率。  相似文献   

6.
以CBP为主体的高色纯度红色磷光有机电致发光器件   总被引:4,自引:1,他引:3       下载免费PDF全文
以铱配合物红色磷光体Ir(piq)2(acac)为掺杂剂,制备了基于CBP材料的一系列红色电致磷光器件(PLED),其结构为ITO/CuPC(1nm)/Ir(piq)2(acac):CBP(25nm)/BCP(10nm)/Alq3(35nm)/LiF(1nm)/Al(100nm),对4种不同的掺杂剂浓度进行了比较,研究了它们的电致发光特性。得出了Ir(piq)2(acac)的最佳掺杂比为8%,此时器件的色坐标都非常接近标准红色,且色纯度超过了98%以上;在16V时,色坐标为(x=0.67,y=0.32),色纯度为99.74%,基本满足了全色显示对红色发光的要求。  相似文献   

7.
红色磷光微腔有机电致发光器件的发光性能   总被引:1,自引:0,他引:1  
张春玉  秦莉  王洪杰 《发光学报》2014,(12):1464-1468
制备了结构为G/DBR/ITO/Mo O3(1 nm)/Tc Ta(55 nm)/CBP∶Ir(piq)2acac(44 nm,6%)/TPBI(55nm)/Li F(1 nm)/Al(80 nm)的红色磷光微腔有机电致发光器件(MOLED),同时制作了无腔对比器件OLED,研究微腔结构对磷光器件发光性能的影响。研究发现,OLED的电致发光(EL)峰值为626 nm,半高全宽(FWHM)为92 nm;MOLED的发光峰值为628 nm,FWHM为42 nm,窄化了1/2。MOLED的最大亮度、最大电流效率、最大外量子效率(EQE)分别为121 000 cd/m2、27.8 cd/A和28.4%,OLED的最大亮度、最大电流效率、最大EQE分别为54 500 cd/m2、13.1 cd/A和16.6%。结果表明,微腔器件的发光性能与无腔器件相比得到了较大幅度的提升。  相似文献   

8.
基于铱配合物材料的高效高稳定性有机发光二极管   总被引:1,自引:0,他引:1       下载免费PDF全文
使用基于重金属Ir的新磷光材料(tpbi)2Ir(acac),制备了多层结构有机发光二极管器件: ITO/CuPc (40 nm)/α-NPD (45 nm)/CBP: (tpbi)2Ir(acac) (3%, 30nm)/BCP(20 nm)/Alq3 (20 nm)/LiF (1 nm)/Al (100 nm).测试了材料的寿命、光谱吸收性质和器件的I-V-L特性.器件在低电压下电流符合热发射注入模型,高电压下I-V呈线形关系.不同偏压下器件发光光谱稳定,多峰拟合结果表明器件光谱由α-NPD发光峰(450 nm),(tpbi)2Ir(acac)主发光峰(518 nm)和肩峰(543 nm)构成.驱动电压为6 V时,器件效率达到最大12.1 lm/W,此时亮度为136 cd/m2,器件亮度最大为13500 cd/m2,此时效率为0.584 lm/W. 关键词: 有机发光二极管 磷光 效率 I-V-L特性')" href="#">I-V-L特性 光谱  相似文献   

9.
以苯乙烯类化合物BCzVB为蓝色荧光染料,以铱配合物Btp_2Ir(acac)为红色磷光染料,共掺杂到CBP基质中作为发光层,制备了白色有机电致发光器件,研究了该体系发光色度漂移的原因。器件在掺杂CBP:6?zVB: 0.2%Btp_2Ir(acac),在.驱动电流从4~200 mA/cm~2变化范围内,发光色坐标从(0.340,0.273)飘移到(0.308, 0.273),色坐标轻微蓝移。对器件发光光谱和亮度-电流密度曲线等分析表明:器件色度的轻微蓝移是由于CBP基质向Btp_2Ir(acac)掺杂剂完全的能量传递、荧光染料BCzVB向磷光染料Btp_2Ir(acac)不完全的能量传递等内在物理过程和磷光染料Btp_2Ir(acac)自身发光饱和等特性共同决定的。  相似文献   

10.
以铱配合物红色磷光体Ir(piq)2(acac)为掺杂剂,制备了基于BAlq材料的红色电致磷光器件,其结构为ITO/NPB(30nm)/Ir(piq)2(acac):BAlq(25nm)/BCP(13nm)/Alq3(35nm)/LiF(1nm)/Al(1000nm),当掺杂浓度为8%的时候,器件发光的色坐标为(x=0.67,y=0.32),基本满足了全色显示对红色发光的要求。在电压为16V时,器件达到最高亮度9380cd/m2。在电流密度为5.45mA/cm2时,外量子效率达到最大5.7%。由于磷光体Ir(piq)2(acac)的磷光寿命较短,所以器件在高电流密度下,仍然保持较高的外量子效率。电流密度为100mA/cm2时,外量子效率仍然维持在4.7%。进一步研究表明在器件中短程的Dexter能量传递以及红光染料对空穴的直接捕获两种机制同时存在。  相似文献   

11.
为研究激基复合物器件激子复合区域的变化,在TPD/BPhen界面可形成激基复合物发光的基础上,以Ir(pq)2(acac)为探测层,制备器件ITO/Mo O_3(2.5 nm)/TPD((40-x)nm)/Ir(pq)2(acac)(0.5 nm)/TPD(x,x=0,3,6,10 nm)/BPhen(40 nm)/Cs2CO_3/Al,其中靠近BPhen的TPD称之为间隔层。电致发光光谱表明,该组器件的激子复合区域主要位于Ir(pq)2(acac)薄层和TPD/BPhen界面,分别发射595 nm和478 nm的光。随着TPD间隔层厚度的增加和电压的升高,发光区域向激基复合物区域(TPD/BPhen界面)移动,即更多的电子和空穴在TPD/BPhen界面形成激基复合物发光,Ir(pq)2(acac)发光减弱。当间隔层厚度由0 nm增至10nm时,6 V电压下的Ir(pq)2(acac)和激基复合物发光强度的比值由44降至1.5。对于间隔层厚度为6 nm的器件,Ir(pq)2(acac)和激基复合物发光强度的比值由6 V时的2.8降至10 V时的1.0。由此可见,激基复合物给体作间隔层能有效调节激子复合区域。  相似文献   

12.
使用典型绿色磷光材料Ir(ppy)3作为发光层,DBR和金属Al作为微腔的一对反射镜,制备了结构为Glass/DBR/ITO/Mo O3(1 nm)/Tc Ta(40 nm)/CBP:Ir(ppy)3(40 nm,6%)/TPBI(47 nm)/Li F(1 nm)/Al(80 nm)的绿色磷光微腔有机电致发光器件(MOLED),同时制作了无腔对比OLED器件,研究微腔结构对器件发光性能的影响。发现OLED的电致发光谱(EL)的峰值是510 nm,半峰全宽(FWHM)为70 nm,MOLED的峰值是514 nm,FWHM为35 nm,比OLED窄化了1/2,MOLED的最大亮度、最大电流效率分别为143000 cd/m2和64.4 cd/A,OLED的最大亮度、最大电流效率分别为103000 cd/m2和41.6 cd/A;测试并计算了器件的外量子效率(EQE),MOLED和OLED的最大EQE分别为18.6%和14.3%。结果表明,微腔器件发光性能比无腔器件得到了很大的改善。  相似文献   

13.
以2',6'-二氟-2,3'-联吡啶(Hdfpypy)为主配体,空间位阻的3-乙酰基樟脑(Hacam)为辅助配体,合成了二-[2',6'-二氟-2,3'-联吡啶-N,C4'][3-乙酰基-1,7,7-三甲基-双环[2.2.1]2-庚酮-O,O]铱(Ⅲ)((dfpypy)2Ir(acam))。在四氢呋喃(THF)溶液中,配合物光致发光(PL)光谱最大发射峰值为466 nm,在487nm左右有一个不明显的肩峰,半峰宽为55 nm。配合物在脱气THF溶液中的PL量子效率为0.51。以(dfpypy)2Ir(acam)为发光层,制备了器件结构为ITO/HATCN(1 nm)/TAPC(40 nm)/(dfpypy)2Ir(acam)(10 nm)/BmpypB(40 nm)/LiF(1 nm)/Al(90 nm)的蓝色非掺杂磷光发光器件。电致发光(EL)光谱的最大发射峰值为474 nm。器件的启动电压为3.5 V。在电流密度为20 mA·cm-2时,CIE色坐标值为(0.17,0.29)。在驱动电压为11 V时,器件最大亮度为2 170 cd·m-2。在驱动电压为4.2 V时,最大功率效率为5.25 lm·W-1,最大亮度效率为6.45 cd·A-1。  相似文献   

14.
唐晓庆  于军胜  李璐  王军  蒋亚东 《物理学报》2008,57(10):6620-6626
通过对一种新型贵金属铱的配合物磷光材料(pbi)2Ir(acac)与咔唑共聚物进行物理掺杂, 制备了结构为indium-tin oxide(ITO)/poly(N-vinylcarbazole)(PVK): (pbi)2Ir(acac)(x)/2,9-dimethyl-4,7-diphenyl-1,10-phenan throline(BCP)(20nm)/8-Hydroxyquinoline aluminum(Alq3)(10nm)/Mg:Ag的聚合物电致磷光器件,研究了磷光聚合物掺杂体系在低掺杂浓度时(0.1%和0.5%(质量百分数,全文同))的光致发光(PL)和电致发光(EL)特性. 结果表明, 该掺杂体系的PL光谱和EL光谱中均同时存在主体材料PVK与磷光客体(pbi)2Ir(acac)的发光光谱, 但主客体的发射强度不同,推测该掺杂体系在电致发光条件下, 同时存在主体材料到客体的不完全的能量传递和载流子直接俘获过程. 磷光掺杂浓度为0.1%的器件在19V电压下实现了白光发射, 色坐标为(0.32, 0.38), 掺杂浓度为0.5%的器件在20.6V电压下的最大发光亮度为11827 cd·m-2, 而在13.4V电压下的最大流明效率为4.13 cd·A-1. 关键词: 有机电致发光器件 铱配合物磷光 聚合物掺杂  相似文献   

15.
设计开发了系列新型咪唑并吡啶类铱(Ⅲ)配合物(BIPy)2Ir(acac)、(PIPy)2Ir(acac)、 (4'-MPIPy)2-Ir(acac)。在化合物Ⅲ中,当R=Ph时得到(BIPy)2Ir(acac)材料,其中BIPy和acac分别表示2-(4-联苯基)咪唑并吡啶和乙酰丙酮。将(BIPy)2Ir(acac)掺杂在N,N'-二咔唑-(1,1'-联苯)-4,4'-二胺(CBP)中制备了高效OLEDs器件,器件的最大电流效率为26.7 cd/A,最大亮度为18 000 cd/cm2,色坐标为(0.32,0.60),是首次报道的新型苯基咪唑并吡啶类铱(Ⅲ)配合物绿色磷光材料。  相似文献   

16.
以铱配合物Ir(tfmppy)2(tpip)(1,tfmppy=4-三氟甲基苯基吡啶,tpip=四苯基膦酰胺)和Ir(dfp-py)2(tpip)(2,dfppy=4,6-二氟苯基吡啶)为发光中心分别制备了绿色和蓝绿色有机电致发光器件ITO/TAPC(1,1-bis[4-[N,N-di(p-tolyl)amino]phenyl]cyclohexane,60 nm)/Ir(Ⅲ)complex(x%,质量分数)∶Sim-CP(3,5-bis(9-carbazolyl)tetraphenylsilane,40 nm)/TPBi(2,2’,2″-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole,60 nm)/LiF(1 nm)/Al(100 nm)。配合物Ir(tfmppy)2(tpip)掺杂质量分数为6%时,以其为发光中心的绿色器件在5 930 cd/m2亮度下的最大电流效率为47.10 cd/A,CIE色坐标为(0.28,0.65),在16.4V驱动电压下的最大发光亮度为38 674 cd/m2。配合物Ir(dfppy)2(tpip)掺杂质量分数为10%时,以其为发光中心的蓝绿色器件在3 175 cd/m2亮度下的最大电流效率为14.80 cd/A,色坐标为(0.15,0.50),在11.8 V驱动电压下的最大发光亮度为25 985 cd/m2。  相似文献   

17.
新型双色有机电致磷光器件   总被引:4,自引:4,他引:0       下载免费PDF全文
所研究的有机电致磷光发光器件(OLED)选用了一种新型金属铱的化合物Ir(C6)2(acac),这种金属化合物由配位体香豆素C6和乙酰丙酮(acac)与金属铱化合形成。Ir(C6)2(acac)可同时作为电子传输材料和发光掺杂剂。比较香豆素C6和Ir(C6)2(acac)固体材料的光致发光谱,可见Ir(C6)2(acac)明显抑制了有机电致发光材料分子与分子之间的发光猝灭效应。采用ITO/TPD(N,N′-diphenyl-N,N′-bis(3-methyl-phenyl)-1,1′biphenyl-4,4′diamine)/Ir(C6)2(acac)/BAlq(bis(2-methyl-8-quinolinolato-N1,O8)-(1,1′-biphenyl-4-olato)aluminum)/Alq3aluminum/Liq(8-hydroxyquinolinelithium)/Al结构,可得到CIE(Commission Interationaled′Eclairage)值为x=0.43;y=0.40的橙红色发光器件,最高亮度可达3390cd/m2,最大电流效率为1.3cd/A。采用同样的器件结构以Ir(C6)2(acac)掺杂Alq3主体得到绿色发光器件,发光色的CIE坐标值为x=0.29;y=0.58,最高亮度可达8832cd/m2,最大电流效率为5.6cd/A。器件的发光机理研究表明Ir(C6)2(acac)的非掺杂器件发光以Ir(C6)2(acac)的三线态磷光为主,器件发光为橙色;在Alq3中的单掺杂器件以Alq3和Ir(C6)2(acac)的荧光为主,同时有小比例Ir(C6)2(acac)的三线态磷光成分存在,器件总体发光为绿色。  相似文献   

18.
张微  张方辉  黄晋 《发光学报》2013,34(7):877-881
制备了结构为ITO/MoO3(50 nm)/NPB(40 nm)/TCTA(10 nm)/CBP:14%GIr1(30 nm)/TCTA(x)/CBP:2%R-4B(10 nm)/BCP(10 nm)/Alq3(40 nm)/LiF(1 nm)/Al(100 nm)的红绿磷光有机电致发光器件,GIr1和R-4B分别为红、绿磷光染料。通过在红绿间插入较薄间隔层TCTA的方法,调节载流子、激子在红绿发光层中的分布,并结合TCTA和BCP对发光层内载流子和激子的有效阻挡作用,研究了载流子调控层TCTA在不同厚度下对器件发光性能的影响。结果表明,TCTA为1 nm时,器件的发光性能得到了很好的提升。电压为6 V时,TCTA为1 nm器件的电流密度、亮度、最大电流效率分别为0.509 mA/cm2、69.91 cd/m2和13.72 cd/A,而TCTA为0 nm器件的电流密度、亮度、最大电流效率分别为1.848 mA/cm2、215.7 cd/m2和11.67 cd/A。  相似文献   

19.
不同主体材料对红色磷光OLED器件性能的影响   总被引:6,自引:3,他引:3       下载免费PDF全文
制作了结构为ITO/2T-NATA (20 nm)/NPB(60 nm)/Zn(BTZ)2 : Ir(DBQ)2(acac) (80 nm)/Alq3(70 nm)/LiF(1 nm)/Al(200 nm)的红光器件,其中2T-NATA是4,4',4″-tris(N-(2-naphthyl)-N-phenyl-amino)-triphenylamine,NPB是N,N'-di(naphthalen-1-yl)-N,N'-diphenyl-benzidine, Zn(BTZ)2是Bis-(2-(2-hydroxyphenyl) benzothiazole)zinc,Ir(DBQ)2(acac)是iridium complex,Alq3 是tris(8-hydroxyquinolato)aluminum。基于Ir(DBQ)2(acac) 掺杂的Zn(BTZ)2体系的器件给出最高电致发光(EL)性能。结果显示:10%Ir(DBQ)2-(acac) 掺杂Zn(BTZ)2器件的亮度和效率分别为25 000 cd/m2和12 cd/A,其相应的EL峰位于620 nm,色坐标(x=0.63,y=0.37)。由于未使用激子阻挡层,所以,比通常磷光器件的制作工艺简单并且操作过程容易控制。  相似文献   

20.
新型红色磷光铱配合物的合成与电致发光性能   总被引:1,自引:0,他引:1       下载免费PDF全文
设计并合成了含羟基配体8-苯并噻唑基2-萘酚(HNBT),并以其为辅助配体、2-苯基吡啶(ppy)为第一配体合成了红色磷光铱配合物Ir(ppy)2(NBT)。采用真空蒸镀的方法,以Ir(ppy)2(NBT)为发光中心制备了红色有机电致磷光器件,详细研究了配合物Ir(ppy)2(NBT)的热稳定性、光物理与电致发光性能。值得注意的是,配合物Ir(ppy)2(NBT)的发射谱图近似于高斯形状,只有一个位于614 nm的发射主峰,没有肩峰出现,且半峰宽仅为65 nm;此外,基于配合物Ir(ppy)2(NBT)的最佳器件的最大亮度和效率分别是6 400 cd/m2和4.53 cd/A。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号