首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
近玻尔速度能区高电荷态离子在稠密等离子体中的能量损失是强流重离子束驱动的高能量密度物理等前沿研究中的核心物理问题之一.基于中国科学院近代物理研究所的320 kV实验平台,新建立了一套近玻尔速度能区离子束与激光等离子体相互作用的实验研究装置,用于开展高精度的离子能量损失和电荷态研究.本文将详细介绍该装置的特点,包括脉冲离子束(≥200 ns)的产生与调控、高密度(1017—1021 cm–3)激光等离子体靶的制备、等离子体参数诊断与离子的高精度测量(<1%)等.基于该装置已开展了百keV的质子束和4 MeV的Xe15+离子束与激光Al等离子体靶相互作用的实验,并取得了相应的结果.本实验装置能够为中国在近玻尔速度能区高电荷离子与稠密激光等离子体相互作用研究提供高精度的实验数据,以促进理论工作的发展.  相似文献   

2.
准确测量气态靶区的有效靶原子密度能够提升离子与气体和离子与等离子体靶相互作用实验结果的精度和对物理过程的认识.实验中利用离子加速器引出的100 ke V质子束穿过一定长度的氢气靶,对质子的剩余能量进行了精确测量,获得了在气体靶内的质子能损数据,结合已有的能损研究结果,重新标定了气体靶区内的有效靶原子密度.分别比较了能损、电离型真空计IonIVac ITR 90和薄膜电容型真空计Varian CDG-500的实验测量结果,对比了修正后的电离型真空计有效气压曲线,结果发现质子束能损的测量方式具有原位、高准确性、在线监测等突出优势,为诊断气态靶有效原子密度提供了新的方法.  相似文献   

3.
部分电离等离子体是惯性约束聚变燃料及天体等离子体中的重要组成部分,该等离子体的输运及流体力学等性质受到束缚电子的显著影响,然而当前基于光谱学的技术手段难以对其进行高精度诊断.本文基于中国科学院近代物理研究所低能离子束与等离子体相互作用实验平台,精确测量了100 ke V质子束穿过部分电离氢等离子体靶后的能损,该能损是质子同靶区内自由电子与束缚电子碰撞共同作用的结果.利用已有的能损理论模型,结合激光干涉诊断获得的自由电子密度信息,最终得到了部分电离氢等离子体靶中沿离子路径上的束缚电子密度,并给出了该等离子体的离化度参数.该离子束诊断技术具有在线、原位、分辨率高等优势,为解决部分电离等离子体内部束缚电子密度的诊断问题提供了新的途径.  相似文献   

4.
采用反冲离子飞行时间-散射离子位置灵敏符合测量技术,测量了能量范围在0.7v0—4.4v0(v0为玻尔速度)的碳离子Cq+(q=1—4)与He原子碰撞过程不同出射道靶原子的双电离与单电离截面比R,包括入射离子不损失电子(直接电离)的出射道(Rq,q),入射离子俘获一个电子的出射道(Rq,q-1)和入射离子损失一个电子的出射道(Rq,q+1),并研究了R随入射C离子的能量及电荷态的变化关系.实验表明,对给定电荷态的入射离子,靶原子的双电离与单电离截面比R与出射道有很强的依赖关系,即Rq,q<Rq,q+1<Rq,q-1.直接电离出射道截面比Rq,q与入射离子电荷态几乎无关,而入射离子俘获一个电子的出射道和损失一个电子的出射道靶原子双电离与单电离截面比Rq,q-1Rq,q+1却与入射离子电荷态有很强的关系.采用原子极化理论和电子屏蔽与反屏蔽作用对实验结果进行了解释. 关键词: 离子-原子碰撞 电离 截面比  相似文献   

5.
实验测量了100 keV的质子束穿过部分电离氢等离子体靶后的能量损失. 等离子体靶由气体放电方式产生, 其自由电子密度在1016 cm-3量级, 电子温度约1–2 eV, 维持时间在微秒量级. 研究结果表明: 质子束在等离子体靶中的能量损失与自由电子密度密切相关且明显大于在同密度条件下中性气体靶中的能量损失; 在自由电子密度达到峰值处, 通过实验结果计算得到此时的自由电子库仑对数约为10.8, 与理论计算结果符合较好, 该值比Bethe公式给出的中性气体靶中束缚电子库仑对数高4.3倍,相应的能损增强因子为2.9.  相似文献   

6.
利用冷靶反冲离子动量谱仪,对低能He2+-He碰撞反应中产生的反冲靶离子和炮弹离子进行了符合测量,根据反冲靶离子的动量,研究了转移电离过程中的电荷转移机理.实验结果表明:在20—40 keV能量范围内,靶原子上的一个电子俘获到炮弹离子的基态,另一个电子直接发射到靶的连续态的直接电离及另一个电子俘获到炮弹离子的连续态的过程(ECC)是最主要的转移电离机理,且ECC过程主要发生在大碰撞参数条件下;炮弹离子俘获两个电子处在双激发态的自电离过程的贡献很小. 关键词: 冷靶反冲离子动量谱仪 转移电离机理 离子原子碰撞  相似文献   

7.
在中能区测量了Cq+(q=1-4)与He,Ne,Ar气体原子碰撞的电子损失截面,计算分析了入射离子损失两个电子与一个电子的总截面比 R21. 单反应道分析无法完全解释所有实验结果,必须同时考虑入射离子的电子损失、电子俘获和靶原子电离各种出射道间的耦合作用. 对于不同靶原子的碰撞,入射离子损失一个电子和两个电子的速度阈值可以由屏蔽和反屏蔽理论解释. 然而,该理论不能完全解释截面比 R21 关键词: 离子-原子碰撞 截面 电子损失  相似文献   

8.
 利用线性Vlasov-Poisson方程,研究了带电粒子在磁化二份量等离子体中运动时产生的动力学极化效应及能量损失,重点分析了外磁场及等离子体中离子的极化效应对入射粒子能量损失响。数值结果表明:入射粒子的能量损失有两个峰,分别位于高速区和低速区,对应于等离子体中的电子极化效应和离子极化效应。在强磁场情况下,低速粒子的能量损失主要来自离子的极化效应;而在弱磁场情况下,高速粒子的能量损失则主要来自于电子的极化效应。  相似文献   

9.
重离子与固体表面相互作用时,会引起靶原子内壳层的电离,相应空穴退激过程中发射的X射线对研究重离子与固体表面的相互作用有着重要意义,可为相关研究提供基础数据.目前,在K和L壳层电离方面做了一些工作,而M壳层的研究较少,本文依托兰州重离子加速器国家实验室320 kV高电荷态离子综合研究平台,测量了不同能量的H~+, Ar~(8+), Ar~(12+), Kr~(13+)和Eu~(20+)离子与Au表面作用产生的特征X射线谱及其能移,计算了X射线的产额比值.结果表明:重离子引起了靶原子内壳层的多电离,多电离效应使Au的MX射线有不同程度的能移;多电离程度取决于入射离子能量、离子的原子序数和其外壳层的空穴数量.  相似文献   

10.
用同一动能(150keV)而不同电荷态的40Arq+(8≤q≤16)离子入射金属Al表面,靶原子受激辐射产生特征光谱线. 实验结果表明:高电荷态离子与金属表面相互作用过程中,经过与靶原子碰撞(Penning碰撞)交换动能和共振电子俘获(resonant capture)释放库仑势能,将携带的能量沉积于靶表面,使靶原子激发. 这种激发不同于光激发,它不仅激发了原子复杂电子组态之间的跃迁,而且跃迁辐射的特征谱线强度增强的趋势与入射粒子的库 关键词: 高电荷态离子 库仑势 特征光谱 光谱强度  相似文献   

11.
高电荷态离子Arq+入射在金属表面形成靶原子X射线谱   总被引:3,自引:3,他引:0  
本文报道低能高电荷Ar12+、Ar13+ 、Ar14+离子与金属Mo表面作用过程中Mo原子受激发射X射线和X射线强度随入射能量变化的实验结果.结果表明,低速高电荷离子与金属表面原子相互作用可有效地激发靶原子或靶离子内壳层电子而发射X射线.  相似文献   

12.
介绍了使用位置灵敏技术和飞行时间方法研究中低能低电荷态离子-原子碰撞过程中转移电离与单电子俘获过程.对于确定的入射离子电荷态,通过理论分析及与实验数据对比给出了转移电离与单电子俘获截面比RTS随着入射离子速度VP的变化规律和转移电离过程中电离的电子主要来自靶原子的最外亚壳层. 关键词: 转移电离 逃离半径 电离半径 俘获半径  相似文献   

13.
利用兰州大学2×1.7 MV串列加速器离子-原子碰撞实验终端上产生的单核子能量为20—500 keV的Cq+和Oq+q=1—4)离子与He原子碰撞.采用符合测量方法和多参数数据获取系统得到了散射离子与反冲离子电荷态的二维谱,从而分别得到直接电离、入射离子俘获电子和入射离子损失电子截面与总截面的截面比Rdirect, RcaptureRloss,并对强扰动能区的各个反应道之间竞争关系及同一反应道在不同碰撞体系中所表现出的实验规律进行了比较和定性分析. 关键词: 离子-原子碰撞 截面比 竞争关系 强扰动区  相似文献   

14.
利用兰州大学2×1.7MV串列加速器离子-原子碰撞实验终端上产生的单核子能量为20-500 keV的Cq+和Oq+(q=1-4)离子与He原子碰撞.采用符合测量方法和多参数数据获取系统得到了散射离子与反冲离子电荷态的二维谱,从而分别得到直接电离、入射离子俘获电子和入射离子损失电子截面与总截面的截面比Rdirect,Rcapture和Rloss,并对强扰动能区的各个反应道之间竞争关系及同一反应道在不同碰撞体系中所表现出的实验规律进行了比较和定性分析.  相似文献   

15.
陈民  盛政明  郑君  张杰 《物理学报》2006,55(5):2381-2388
在现有的一维粒子模拟程序的基础上发展了带光电离和碰撞电离及蒙特卡罗两体碰撞的模拟程序(1D PIC-MCC). 用此程序模拟研究了短脉冲激光与He气靶相互作用时电子和离子的加速过程. 研究表明当强激光与过临界密度的微米厚度的平面靶相互作用时,靶前表面物质将被激光脉冲前沿迅速离化;新生的电子被激光场有质动力加速成为高能电子,这些电子穿入到靶内,通过电子碰撞电离离化靶内物质;一部分高能电子穿透靶后,会在靶的后表面形成强的电荷分离场,该场迅速离化靶后表面物质,同时使得后表面离子得到加速. 部分穿透靶的超热电子将被电荷分离场重新拉回靶内,在靶的前后表面振荡. 一些振荡电子在此过程中得到电荷分离场加速,离开前表面,在前表面也形成电荷分离场,使前表面离子得到加速. 关键词: 激光等离子体 光电离和碰撞电离 电子加速 离子加速  相似文献   

16.
研究了高电荷态离子129Xe28+轰击金属Au和Mo表面产生的特征X射线谱.实验结果表明,在入射离子的电荷态和能量相同的条件下,对于核电荷数较小、原子质量较轻的靶原子,只有其内壳层的电子才能被激发而产生X射线,而核电荷数较大、原子质量较重的靶原子只有其较外壳层的电子能被激发而产生X射线.特征X射线的产额随入射离子动能的增加而增加.  相似文献   

17.
介绍了离子-原子碰撞过程中双微分绝对截面的计算方法.利用符合技术测量了中能区C3++Ne碰撞系统的纯电离微分绝对截面. 将实验结果与多体经典蒙特卡罗方法计算结果进行对比后发现,纯电离截面随入射能量变化的趋势基本一致,对理论与实验产生差异的原因作了分析. 对多重电离的电离机制分析表明:高价态的反冲离子主要来自于俄歇贡献;随着入射能量的升高,电子-电子间的库仑作用也逐渐显现. 此实验方法可以用于相同实验装置上的各种反应出射道的绝对截面测量,入射离子种类及入射离子能量范围将得到拓展. 关键词: 离子-原子碰撞 绝对截面 纯电离  相似文献   

18.
丁丁  何斌  刘玲  张程华  王建国 《物理学报》2009,58(12):8419-8425
应用经典径迹Monte Carlo(CTMC)方法研究了He2+与H原子在等离子体环境下的碰撞电离过程,计算了在5—400 keV/u的能区随等离子体屏蔽作用变化的碰撞电离总截面和一阶微分截面.等离子体中带电粒子之间的相互作用采用Debye-Hückel模型来描述.由于等离子体屏蔽效应的存在,靶中束缚态电子能级及其经典微正则分布以及入射离子与靶电子的相互作用都发生了变化,而这些变化会直接影响碰撞电离过程.研究发现,碰撞电离总截面随等离子屏蔽的增加而增大,特别是在10 keV/u以下的低能区电离截面有量级的增加.对随能量变化的一阶微分截面,在低能碰撞过程中,屏蔽作用增加,微分截面呈量级增加,高能碰撞微分截面呈倍数增加.同时,屏蔽作用导致电离电子向高能方向移动,随着碰撞能量的增加两体碰撞机制的贡献越来越大,并在较高的出射电子能量出现了一个新的峰.对无屏蔽的自由原子碰撞过程,CTMC方法计算出的电离总截面在碰撞能量大于70 keV/u的较高能区在实验误差内与实验测量结果符合很好,而在较低的能区比实验值小30%—50%. 关键词: 重粒子碰撞电离 等离子体屏蔽效应 经典径迹Monte Carlo方法 Debye-Hückel模型  相似文献   

19.
当高电荷态类钴氙离子(cobalt like -Xe, Xe27+)入射金属Ni表面过程中,共振电子俘获释放势能完成中性化,形成多激发态的Xe原子,其外壳层电子退激辐射红外光谱线.入射离子特殊的势能释放方式、离子动能和金属表面引起离子增益的能量在极短的时间(飞秒量级)沉积靶平方纳米尺度的空间范围,引起靶表面原子激发和电离,形成复杂组态之间的跃迁,特别是偶极禁戒跃迁(电四极跃迁、磁偶极跃)和X射线发射.单离子X射线产额随入射离子的动能增加而增加. 关键词: 高电荷态离子 红外光谱线 X射线 禁戒跃迁  相似文献   

20.
在兰州重离子加速器国家实验室电子回旋共振离子源高电荷态原子物理实验平台上,用低能(0.75keV/u≤EP/MP≤10.5keV/u,即3.8×105m/s≤vP≤1.42×106m/s)He2+,O2+和Ne2+离子束正入射到自清洁Si表面时二次电子发射产额的实验结果.结果表明电子发射产额γ近似正比于入射离子动能EP/MP.在相同动能下,γ(O)γ(Ne)γ(He),对于原子序数ZP比较大的O2+和Ne2+离子,ZP大者反而γ小,这与较高入射能量时的结果截然不同.通过计算不同入射能量下入射离子的阻止能损S,发现反冲原子对激发二次电子的作用随入射离子能量的降低显著增大,这正是导致在较低能量范围内二次电子发射产额与较高入射能量时存在差异的主要原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号