首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
利用耦合的Riccati方程组构造微分-差分方程精确解   总被引:2,自引:0,他引:2       下载免费PDF全文
杨先林  唐驾时 《物理学报》2008,57(6):3305-3311
通过引入耦合的Riccati方程组得到一个构造非线性微分-差分方程精确解的代数方法.作为实例,将该方法应用到了一般格子方程,相对论的Toda格子方程和(2+1)维Toda格子方程.借助符号计算软件Mathematica,获得了这些方程的扭结型孤波解和复数解.该方法也适合求解其他非线性微分-差分方程的精确解. 关键词: 耦合Riccati方程组 格子方程 相对论的Toda格子方程 (2+1)维Toda格子方程  相似文献   

2.
We consider a simple model of the lossless interaction between a two-level single atom and a standing-wave single-mode laser field which creates a one-dimensional optical lattice. The internal dynamics of the atom is governed by the laser field, which is treated as classical with a large number of photons. The center-of-mass classical atomic motion is governed by the optical potential and the internal atomic degrees of freedom. The resulting Hamilton-Schrö dinger equations of motion are a five-dimensional nonlinear dynamical system with two integrals of motion, and the total atomic energy and the Bloch vector length are conserved during the interaction. In our previous papers, the motion of the atom has been shown to be regular or chaotic (in the sense of exponential sensitivity to small variations of the initial conditions and/or the system’s control parameters) depending on the values of the control parameters, atom-field detuning, and recoil frequency. At the exact atom-field resonance, the exact solutions for both the external and internal atomic degrees of freedom can be derived. The center-of-mass motion does not depend in this case on the internal variables, whereas the Rabi oscillations of the atomic inversion is a frequency-modulated signal with the frequency defined by the atomic position in the optical lattice. We study analytically the correlations between the Rabi oscillations and the center-of-mass motion in two limiting cases of a regular motion out of the resonance: (1) far-detuned atoms and (2) rapidly moving atoms. This paper is concentrated on chaotic atomic motion that may be quantified strictly by positive values of the maximal Lyapunov exponent. It is shown that an atom, depending on the value of its total energy, can either oscillate chaotically in a well of the optical potential, or fly ballistically with weak chaotic oscillations of its momentum, or wander in the optical lattice, changing the direction of motion in a chaotic way. In the regime of chaotic wandering, the atomic motion is shown to have fractal properties. We find a useful tool to visualize complicated atomic motion-Poincaré mapping of atomic trajectories in an effective three-dimensional phase space onto planes of atomic internal variables and momentum. The Poincaré mappings are constructed using the translational invariance of the standing laser wave. We find common features with typical nonhyperbolic Hamiltonian systems-chains of resonant islands of different sizes imbedded in a stochastic sea, stochastic layers, bifurcations, and so on. The phenomenon of the atomic trajectories sticking to boundaries of regular islands, which should have a great influence on atomic transport in optical lattices, is found and demonstrated numerically.  相似文献   

3.
Numerical 1D-3V solutions of the Wong-Yang-Mills equations with anisotropic particle momentum distributions are presented. They confirm the existence of plasma instabilities for weak initial fields and of their saturation at a level where the particle motion is affected, similar to Abelian plasmas. The isotropization of the particle momenta by strong random fields is shown explicitly, as well as their nearly exponential distribution up to a typical hard scale, which arises from scattering off field fluctuations. By variation of the lattice spacing we show that the effects described here are independent of the UV field modes near the end of the Brioullin zone.  相似文献   

4.
The complex tanh-function expansion method was presented recently, and it can be applied to derive exact solutions to the Schroedinger-type nonlinear evolution equations directly without transformation. In this paper,the complex tanh-function expansion method is applied to derive the exact solutions to the general coupled nonlinear evolution equations. Zakharov system and a long-short-wave interaction system are considered as examples, and the new applications of the complex tanh-function expansion method are shown.  相似文献   

5.
The complex tanh-function expansion method was presented recently, and it can be applied to derive exact solutions to the Schrodinger-type nonlinear evolution equations directly without transformation. In this paper,the complex tanh-function expansion method is applied to derive the exact solutions to the general coupled nonlinear evolution equations. Zakharov system and a long-short-wave interaction system are considered as examples, and the new applications of the complex tanh-function expansion method are shown.  相似文献   

6.
王琪 《理论物理通讯》2010,53(6):1111-1116
In this letter, the homotopy analysis method is successfully applied to solve the Relativistic Toda lattice system. Comparisons are made between the results of the proposed method and exact solutions. Analysis results show that homotopy analysis method is a powerful and easy-to-use analytic tool to solve systems of differential-difference equations.  相似文献   

7.
Starting from a discrete spectral problem, a hierarchy of integrable lattice soliton equations is derived. It is shown that the hierarchy is completely integrable in the Liouville sense and possesses discrete bi-Hamiltonian structure. A new integrable symplectic map and finite-dimensional integrable systems are given by nonlinearization method. The binary Bargmann constraint gives rise to a Bäcklund transformation for the resulting integrable lattice equations. At last, conservation laws of the hierarchy are presented.  相似文献   

8.
We study localization in polymer chains modeled by the nonlinear discrete Schr?dinger equation (DNLS) with next-nearest-neighbor (n-n-n) interaction extending beyond the usual nearest-neighbor exchange approximation. Modulational instability of plane carrier waves is discussed and it is shown that localization gets amplified under the influence of an enhanced interaction radius. Furthermore, we construct exact localized solitonlike solutions of the n-n-n interaction DNLS. To this end the stationary lattice system is cast into a nonlinear map. The homoclinic orbits of unstable equilibria of this map are attributed to standing solitonlike solutions of the lattice system. We note that in comparison with the standard next-neighbor interaction DNLS which bears only one type of static soliton-like states (either staggering or unstaggering) the one with n-n-n interaction radius can support unstaggering as well as staggering stationary localized states with frequencies lying above respectively below the linear band. Generally, the stronger the n-n-n interaction on the DNLS lattice the smaller are the maximal amplitudes of the standing solitonlike solutions and the less rapid are their exponential decays. Received 4 October 2000  相似文献   

9.
Under investigation in this paper is a relativistic Toda lattice system with one perturbation parameter α abbreviated as RTL_(α) system by Suris, which may describe the motions of particles in lattices interacting through an exponential interaction force. First of all, an integrable lattice hierarchy associated with an RTL_(α) system is constructed, from which some relevant integrable properties such as Hamiltonian structures, Liouville integrability and conservation laws are investigated. Secondly, the discrete generalized(m, 2 N-m)-fold Darboux transformation is constructed to derive multi-soliton solutions, higher-order rational and semirational solutions, and their mixed solutions of an RTL_(α) system. The soliton elastic interactions and details of rational solutions are analyzed via the graphics and asymptotic analysis. Finally, soliton dynamical evolutions are investigated via numerical simulations,showing that a small noise has very little effect on the soliton propagation. These results may provide new insight into nonlinear lattice dynamics described by RTL_(α) system.  相似文献   

10.
Akira Satoh 《Molecular physics》2013,111(18):2301-2311
We have developed a lattice Boltzmann method based on fluctuation hydrodynamics that is applicable to the flow problem of a particle suspension. In this method, we have introduced the viscosity-modifying method, rather than the velocity-scaling method, in which a modified viscosity is used for generating random forces in lattice Boltzmann simulations. The viscosity-modifying method is found to be applicable to the simulation of a magnetic particle suspension. We have applied this method to the two-dimensional Poiseuille flow of a magnetic suspension between two parallel walls in order to investigate the behavior of magnetic particles in a non-uniform applied magnetic field. From the results of the snapshots, the pair correlation function between the magnetic pole and the magnetic particles and the averaged local particle velocity and magnetization distributions, it was observed that the behavior of the magnetic particles changes significantly depending upon which factor dominates the phenomenon in the balance between the magnetic particle–particle interaction, the non-uniform applied magnetic field and the translational and rotational Brownian motion.  相似文献   

11.
We propose a general formalism to study the static properties of a system composed of particles with nearest neighbor interactions that are located on the sites of a one-dimensional lattice confined by walls (confined Takahashi lattice gas). Linear recursion relations for generalized partition functions are derived, from which thermodynamic quantities, as well as density distributions and correlation functions of arbitrary order can be determined in the presence of an external potential. Explicit results for density profiles and pair correlations near a wall are presented for various situations. As a special case of the Takahashi model we consider in particular the hard rod lattice gas, for which a system of nonlinear coupled difference equations for the occupation probabilities has been presented by Robledo and Varea. A solution of these equations is given in terms of the solution of a system of independent linear equations. Moreover, for zero external potential in the hard-rod system we specify various central regions between the confining walls, where the occupation probabilities are constant and the correlation functions are translationally invariant in the canonical ensemble. In the grand canonical ensemble such regions do not exist.  相似文献   

12.
A general approach is given for the nonlinear excitations in the compressible Heisenberg ferromagnetic chain in coherent-state representation. It is shown that the relative ratio of ε to δ is very important for determining the nonlinear modified terms of the equations of motion. ε = 1√S (S is the spin length) and δ = α/λ0 (α is the lattice constant and λ0 is the characteristic wavelength of the excitations) are two small dimensionless parameters used in the semiclassical approximation and in the long wavelength approximation, respectively. In the case of δ = O(ε), the reduced equations of motion are solved exactly and spin soliton and elastic kink solutions are obtained. The other cases of the relation between δ and ε are also discussed and the solitary wave solutions are also given. The result obtained by Ferrer, as a special case, has been included in our approach.  相似文献   

13.
We present a novel method to study interacting orbits in a fixed mean gravitational field associated with a solution of the Einstein field equations. The idea is to consider the Newton gravity among the orbiting particles in a geometry given by the main source. For this purpose, the motion equations are obtained in two different but equivalent ways. The particles can either be considered as a zeroth order (static) perturbation to the given metric or as an external Newtonian force in the geodesic equations. After obtaining the motion equations we perform simulations of two and three interacting particles moving around a black hole, i.e., in a Schwarzschild geometry. We also compare with the equivalent Newtonian problem and note differences in the stability, e.g., binary systems are found only in the general relativistic approach.  相似文献   

14.
In this work, an adaptation of the tanh/tan-method that is discussed usually in the nonlinear partial differential equations is presented to solve nonlinear polynomial differential-difference equations. As a concrete example, several solitary wave and periodic wave solutions for the chain which is related to the relativistic Toda lattice are derived. Some systems of the differential-difference equations that can be solved using our approach are listed and a discussion is given in conclusion.  相似文献   

15.
1 Introduction During recent decades great progress has been made in the soliton formation and its application in one-dimensional (1D) system. The interest in the soliton modes has been intensified due to their observation in the energy propagating along bio- logical molecule chain. The new achievement in studying the topological soliton in polyacetylene molecule chain and the phenomena of transformation with the action of electric field are continuously reported[1]. The electric field domain…  相似文献   

16.
黄国翔 《中国物理》2001,10(6):523-530
Parametric simultaneous solitary wave (simulton) excitations are shown to be possible in nonlinear lattices. Taking a one-dimensional diatomic lattice with a cubic potential as an example, we consider the nonlinear coupling between the upper cut-off mode of acoustic branch (as a fundamental wave) and the upper cut-off mode of optical branch (as a second harmonic wave). Based on a quasi-discreteness approach the Karamzin-Sukhorukov equations for two slowly varying amplitudes of the fundamental and the second harmonic waves in the lattice are derived when the condition of second harmonic generation is satisfied. The lattice simulton solutions are given explicitly and the results show that these lattice simultons can be nonpropagating when the wave vectors of the fundamental wave and the second harmonic waves are exactly at π/a (where a is the lattice constant) and zero, respectively.  相似文献   

17.
Continuum-limit equations for moving polarons on a one-dimensional lattice with a harmonic interaction potential between adjacent particles and a simple nonlinear potential with a cubic nonlinearity are derived for the first time; for some particular cases, their solutions are obtained. For a harmonic lattice in the continuum limit, a system of integrable nonlinear partial differential equations is derived. A one-soliton solution to this system describes a polaron moving with a constant velocity. The speed of this polaron is uniquely related to its amplitude, with its values ranging from zero to the speed of sound. For a nonlinear lattice, the resulting system of differential equations is integrable at a certain ratio of the problem parameters. The one-soliton solution to this system, as in the harmonic case, describes a polaron moving with a constant velocity. At arbitrary values of the lattice parameters, the nonlinear lattice was studied by numerical methods. It turned out that, in the entire range of parameters, the nonlinear lattice gives rise to moving polarons, with the speed of the polaron being determined by the competition between the electron-photon interaction parameter α and the nonlinearity parameter β. At α ? β, the behavior of the polaron is very close to the dynamics on the harmonic lattice. In the opposite case, the dynamic nonlinearity begins to dominate, giving rise to dynamics inherent to solitons, so that speed of the polaron can exceed the speed of sound. In a certain range of α and β, numerical calculations revealed a family of polaron-type stable solutions, the envelope of which can have several peaks. The numerical and exact analytical solutions are in very good agreement for a sufficiently large radius of the polaron, when the system of equations obtained in the continuum approximation has a solution.  相似文献   

18.
余寒梅  程荣军  葛红霞 《中国物理 B》2010,19(10):100512-100512
Traffic congestion is related to various density waves, which might be described by the nonlinear wave equations, such as the Burgers, Korteweg-de-Vries (KdV) and modified Korteweg-de-Vries (mKdV) equations. In this paper, the mKdV equations of four different versions of lattice hydrodynamic models, which describe the kink--antikink soliton waves are derived by nonlinear analysis. Furthermore, the general solution is given, which is applied to solving a new model --- the lattice hydrodynamic model with bidirectional pedestrian flow. The result shows that this general solution is consistent with that given by previous work.  相似文献   

19.
The solutions of equations characterizing the dynamics of charged particles in electromagnetic Penning–Malmberg traps with a rotating transverse electric field are presented and analyzed. The equations of motion are transformed in a way that makes it possible to distinguish between the motions of magnetron and cyclotron particles, reduce the system of equations to a stationary one, and conclude that asymptotically Lyapunov stable solutions of these equations are lacking in a certain parameter interval. This allows one to optimize the confinement of charged particles in such traps.  相似文献   

20.
A discrete matrix spectral problem and the associated hierarchy of Lax integrable lattice equations are presented, and it is shown that the resulting Lax integrable lattice equations are all Liouville integrable discrete Hamiltonian systems. A new integrable symplectic map is given by binary Bargmann constraint of the resulting hierarchy. Finally, an infinite set of conservation laws is given for the resulting hierarchy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号