首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A flow injection electrochemiluminescence (FI-ECL) analysis method for the determination of sibutramine in the presence of luminol was studied under conventional cyclic voltammetry in alkaline Na2CO3-NaHCO3 buffer solution (pH 8.0-12.0). This method is based on the enhanced ECL of luminol-sibutramine. Meanwhile, in order to overcome the drawbacks of conventional cells, a FI cell was designed, which is reusable and has a great improvement in sensitivity and selectivity for ECL analysis. Under the optimal experimental conditions, the enhanced ECL intensity was linearly related to the concentration of sibutramine in the range 1.0×10−8-1.0×10−6 g mL−1 with a detection limit of 2.48×10−9 g mL−1 and a correlation coefficient (R) of 0.9995. The relative standard deviation (RSD) for 1.0×10−7 g mL−1 samples was 2.1% (n=11). The possible mechanism discussed. The proposed FI-ECL method has been successfully applied to the determination of sibutramine in diet pill samples.  相似文献   

2.
This study reports a novel electrochemical DNA biosensor based on zirconia (ZrO2) and gold nanoparticles (NG) film modified glassy carbon electrode (GCE). NG was electrodeposited onto the glassy carbon electrode at 1.5 V, and then zirconia thin film on the NG/GCE was fabricated by cyclic voltammetric method (CV) in an aqueous electrolyte of ZrOCl2 and KCl at a scan rate of 20 mV/s. DNA probes were attached onto the ZrO2/NG/GCE due to the strong binding of the phosphate group of DNA with the zirconia film and the excellent biocompatibility of nanogold with DNA. CV and electrochemical impedance spectroscopy (EIS) were used to characterize the modification of the electrode and the probe DNA immobilization. The electrochemical response of the DNA hybridization was measured by differential pulse voltammetry (DPV) using methylene blue (MB) as the electroactive indicator. After the hybridization of DNA probe (ssDNA) with the complementary DNA (cDNA), the cathodic peak current of MB decreased obviously. The difference of the cathodic peak currents of MB between before and after the hybridization of the probe DNA was used as the signal for the detection of the target DNA. The sequence-specific DNA of phosphinothricin acetyltransferase (PAT) gene in the transgenic plants was detected with a detection range from 1.0 × 10−10 to 1.0 × 10−6 mol/L, and a detection limit of 3.1 × 10−11 mol/L.  相似文献   

3.
The quenching of fluorescence intensity and decay time of protonated form of 6-methoxyquinoline (6MQ+) with chloride ion (Cl) in aqueous solution at ambient temperatures have been investigated. The quenching follows linear Stern-Volmer relation. The values of Stern-Volmer quenching constant/quenching efficiency (Ksv) and quenching rate constant (Kq) for the Cl ion are close to 75 M−1 and 3.21×109 M−1 S−1, respectively. The quenching is found to be collisional or dynamical in nature. The study reveals that the system can be used as a sensor for the detection of chloride ion.  相似文献   

4.
The magnetic and magnetocaloric properties of polycrystalline La0.70(Ca0.30−xSrx)MnO3:Ag 10% manganite have been investigated. All compositions are crystallized in single phase orthorhombic Pbnm space group. Both, the insulator–metal transition temperature (TIM) and Curie temperature (Tc) are observed at 298 K for x=0.10 composition. Though both TIM and Tc are nearly unchanged with Ag addition, the MR is increased. The MR at 300 K is found to be as large as 31% with magnetic field change of 1 T, whereas it reaches up to 49% at magnetic field of 3 T for the La0.70Ca0.20Sr0.10MnO3:Ag0.10 sample. The maximum entropy change (ΔSMmax) at near its Tc (300.5 K) is 7.6 J kg−1 K−1 upon the magnetic field change of 5 T. The La0.70Ca0.20Sr0.10MnO3:Ag0.10 sample having good MR (31%1 T, 49%3 T) and reasonable change in magnetic entropy (7.6 J kg−1.K−1, 5 T) at 300 K can be a potential magnetic refrigerant material at ambient temperatures.  相似文献   

5.
A novel flow injection method for detection of l-proline was proposed in the presence of CdTe quantum dots (QDs). This method is based on the enhanced anodic electrochemiluminescence (ECL) emission of CdTe QDs l-proline in aqueous system. CdTe QDs were modified with thioglycolic acid to obtain stable water-soluble QDs and intensive anodic ECL emission in Na2CO3–NaHCO3 buffer solution at an indium tin oxide (ITO) electrode, which was used for the sensitive detection of ECL enhancement using our homemade flow cell. Under the optimal conditions, the ECL intensity was correlated linearly with the concentration of l-proline over the range of 1.0×10?8?1.0×10?4 g mL?1 (r=0.9996) and the detection limit was 5.0×10?9 g mL?1. The relative standard deviation was 1.12% for 6.0×10?5 g mL?1 l-proline (n=11). The possible mechanism was discussed. This method put forward a new efficient ECL methodology for enhancement-related determination of l-proline successfully.  相似文献   

6.
High resolution (3 + 1) and (2 + 1)REMPI spectra of HCl and DCl for total current detection at room temperature or TOF mass detection after jet cooling were recorded for the spectral region 89 000-89 600 cm−1. Analysis of the (3 + 1)REMPI spectra by use of three-photon absorption modeling allowed, for the first time, identification and characterization of the l (3Φ3) states. Consistent anomalies in spectral structures due to transitions to the j (3Σ) (0+) state are interpreted as being due to interactions with the V (1Σ+) ion-pair states. Interaction strengths are evaluated. Simulation analyses and determination of isotope shifts allowed evaluation of vibrational and rotational spectroscopic parameters for the l (3Φ3) and the j (3Σ) (0+) states for both molecules.  相似文献   

7.
A new trivalent bismuth ion conducting solid electrolyte, (BixGe1 − x)4/(4 − x)Ta(PO4)3, was successfully developed by selecting the NASICON-type GeTa(PO4)3 as the mother solid. Although bismuth has two kinds of valence states of + 3 and + 5, it was clear that pure trivalent Bi3+ ion conduction, without any electronic conduction by a valence change of bismuth in the oxygen pressure range over 10− 3 Pa, was realized by selecting the crystal structure and constituents of the solid.  相似文献   

8.
The homogeneity of a self-assembled monolayer (SAM) on a surface is an important parameter which affects the ability of a SAM to fulfill its intended function. As an example, SAMs formed from octanethiols can form an impermeable surface, while SAMs based on a bifunctional coupling reagent can form a surface with uniform reactivity. Exposure of gold nanoparticles or gold surfaces to solutions of dithiobis (succinimidylpropionate) (DSP) gives rise to a surface which can react with DNA. Atomic force microscopy, UV-vis and gel electrophoresis experiments indicate that a self-assembled monolayer of DSP on gold nanoparticles can attenuate aggregation, inhibit the “lying down” of covalently-bound single-stranded (ss) DNA and promote more efficient hybridization. The determination of the point of aggregation after reacting DSP with colloidal gold yields 2.86 × 10−10 mol/cm2 or 42% of the value determined from molecular modeling. Cyclic voltammetry experiments validate that DSP on a gold quartz crystal (6.3 × 10−10 mol/cm2) forms a fairly uniform SAM that is within 94% of maximum coverage when compared with results obtained from molecular modeling (6.67 × 10−10 mol/cm2). Surface plasmon resonance experiments indicate that the reaction of a DSP coated gold surface with (ss) DNA yields 2.4 × 10−12 mol/cm2 or reaction with about 1% of the available surface area. Subsequent reactions of the DSP surface with the filler, n-boc-1,4-phenylene diamine (n-boc), yield a total surface coverage of 1.8 × 10−11 mol/cm2. The surrounded (ss) DNA yields a surface with 97% hybridization efficiency toward the complement.  相似文献   

9.
Diamond-like carbon (DLC) films were deposited on Si (1 0 0) substrate using a low energy (219 J) repetitive (1 Hz) miniature plasma focus device. DLC thin film samples were deposited using 10, 20, 50, 100 and 200 focus shots with hydrogen as filling gas at 0.25 mbar. The deposited samples were analyzed by XRD, Raman Spectroscopy, SEM and XPS. XRD results exhibited the diffraction peaks related to SiO2, carbon and SiC. Raman studies verified the formation amorphous carbon with D and G peaks. Corresponding variation in the line width (FWHM) of the D and G positions along with change in intensity ratio (ID/IG) in DLC films was investigated as a function of number of deposition shots. XPS confirmed the formation sp2 (graphite like) and sp3 (diamond like) carbon. The cross-sectional SEM images establish the 220 W repetitive miniature plasma focus device as the high deposition rate facility for DLC with average deposition rate of about 250 nm/min.  相似文献   

10.
The r.f. discharge of sputtering silicon target using argon-oxygen-nitrogen plasma was investigated by optical emission spectroscopy. Electronic temperature (Te) and emission line intensity were measured for different plasma parameters: pressure (from 0.3 to 0.7 Pa), power density (0.6-5.7 W cm−2) and gas composition. At high oxygen concentration in the plasma, both Te and the target self-bias voltage (Vb) steeply decrease. Such behaviour traduces the target poisoning phenomenon. In order to control the deposition process, emission line intensity of different species present in the plasma were compared to the ArI (λ = 696.54 nm) line intensity and then correlated to the film composition analysed by Rutherford Backscattering Spectroscopy.  相似文献   

11.
Polarization spectroscopy in the mid-infrared (IRPS) has been applied to the detection of acetylene molecules making use of the asymmetric C-H stretching vibration at around 3 μm. The infrared laser pulses were produced through difference frequency generation in a LiNbO3 crystal pumped by a Nd:YAG and dye laser system. By directly probing the ro-vibrational transitions with IRPS, sensitive detection of molecules with otherwise inaccessible electronic states was realized with high temporal and spatial resolution by using a pulsed laser and a cross-beam geometry. Detection sensitivities of 2 × 1013 molecules/cm3 (10 ppm in 70 mbar gas mixture) of C2H2 were achieved using the P(1 1) line of the (0 1 0(1 1)0)-(0 0 0 00 00) band. The dependence of the IRPS signal on the pump laser fluence, acetylene mole fraction, and buffer gas pressure of Ar, N2, H2, and CO2 has been studied experimentally. The investigation demonstrates the quantitative nature of IRPS for sensitive detection of polyatomic IR active molecules. In order to fully demonstrate the technique for combustion applications, nascent acetylene molecules were measured in a low pressure methane/oxygen flame.  相似文献   

12.
In the luminol-O2 ECL system, O2 as an endogenous coreactant has the advantages of non-toxicity and stability. Improving the efficiency to generate radicals of O2 is a challenge currently. In this work, a strategy combining physical method - ultrasound and nanomaterial with unique physicochemical properties was designed to enhance the ECL signal of luminol-O2 system. Specifically, high-intensity focused ultrasound (HIFU) pretreatment as a non-invasive method could generate ROS (H2O2, O2•−, OH•, 1O2) in situ, triggering and boosting the ECL signal of luminol. In addition, 1T/2H MoS2 with excellent catalytic activity could catalyze the H2O2 produced in situ, accelerate the oxidation of luminol and further enhance the ECL response. At the same time, combined with the catalytic hairpin assembly (CHA) reaction, the constructed ECL biosensing platform showed excellent performance for the detection of miRNA-155. The concentration range of 0.1 fM ∼ 1 nM with the detection limit as low as 0.057 fM were obtained. Furthermore, the ECL biosensor was also successfully applied to the determination of miRNA-155 in human serum samples. The established ECL sensing platform opens up a promising method for the detection of clinical biomarkers.  相似文献   

13.
High quality Tm-doped YAlO3 (Tm:YAlO3) single crystals were obtained along crystallographic b-axis by the Czochralski technique. Optical absorption and fluorescence spectra for Tm3+ in YAlO3 crystals were investigated at room temperature. Based on Judd-Ofelt approach, the intensity parameters Ωt (t = 2, 4, 6) of Tm:YAlO3 were calculated to be Ω2 = 0.93 × 10−20  cm2, Ω4 = 2.23 × 10−20 cm2, and Ω6 = 1.12 × 10−20 cm2. The spectral parameters such as experimental and theoretical oscillator strengths, radiative transition probabilities, radiative lifetime and the fluorescence branching ratio were also obtained. All results indicate that Tm:YAlO3 is a potential candidate for compact, efficient mid-infrared lasers with laser diode pumping.  相似文献   

14.
Effects of different ions implantation on yellow luminescence from GaN   总被引:1,自引:0,他引:1  
The influence of C, N, O, Mg, Si and co-implants (Mg+Si) ions implantation with fluences in the wide range 1013-1017 cm−2 on the yellow luminescence (YL) properties of wurtzite GaN has been studied by photoluminescence (PL) spectroscopy. Two types of n-type GaN samples grown by metal-organic chemical vapor deposition method (MOCVD) and labeled as No-1 and No-2 were studied. In their as-grown states, No-1 samples had strong YL, while No-2 samples had weak YL. Results of the frontside and backside PL measurements in one of the as-grown GaN epifilms are also presented. Comparing the intensity of YL between frontside and backside PL spectra, the backside PL spectrum shows the more intense YL intensity. This implies that most of the intrinsic defects giving rise to YL exist mainly near the interface between the epilayer and buffer layer. Our experimental results show that the intensity ratio of YL to near-band-edge UV emission (IYL/IUV) decreases gradually by increasing the C implantation fluence from 1013 to 1016 cm−2 for No-1 samples after annealing at 900 °C. When the fluence is 1017 cm−2, a distinct change of the IYL/IUV is observed, which is strongly increased after annealing. For No-2 samples, after annealing the IYL/IUV decreases gradually with increase in the C implantation fluence from 1013 to 1015 cm−2. The IYL/IUV is gradually increased with increasing C fluence from 1016 to 1017 cm−2 after annealing, while IYL/IUV for other ions-implanted GaN samples decreases monotonically with increase in the ions implantation fluences from 1013 to 1017 cm−2 for both No-1 samples and No-2 samples. It is noted that for annealed C-implanted No-2 samples IYL/IUV is much higher than that of the as-grown one and other ion-implanted ones. In addition, IYL/IUV for the Mg, Si, and co-implants (Mg+Si) implanted No-2 samples with a fluence of 1013 cm−2 after being annealed at 900 °C is higher than that of the as-grown one. Based on our experimental data and literature results reported previously, the origins of the YL band have been discussed.  相似文献   

15.
The electronic conductivity of pure ceria with two different impurity levels is examined by dc polarization technique based on the Hebb-Wagner ion blocking method. The impurity level for the ceria with 99.999% purity (5N-CeO2) is about 1/100 of that with 99.9% purity (3N-CeO2) as confirmed by the fluorescence intensity of impurities obtained by Raman spectroscopy. The electronic conductivity for the 5N-CeO2 was measured at T = 973 K to 1173 K, and the results are essentially the same as those for the 3N-CeO2. The electronic conductivity increases with decreasing of P(O2) following slope values of − 1/4 to − 1/6. The − 1/4 dependent region becomes narrower for the 5N-CeO2 than that for the 3N-CeO2. For both types of ceria, the P(O2) independent region appears in the same region of higher than 10− 2 and 10− 3 MPa at T = 1073 K and 973 K, respectively. Activation energies for the 5N-CeO2 were 2.2 eV, 2.6 eV and 1.9 eV in P(O2) dependent regions of − 1/6, − 1/4 and 0, respectively.  相似文献   

16.
This paper reports the growth and spectroscopic characterization of Er3+:Sr3Y(BO3)3 crystal. Er3+:Sr3Y(BO3)3 crystal with dimensions up to ∅20×35 mm3 has been grown by Czochralski method. The polarized spectroscopic properties of Er3+:Sr3Y(BO3)3 crystal were investigated. Based on the Judd-Ofelt theory, the effective intensity parameters Ωt were obtained: Ω2=1.71×10−20 cm2, Ω4=1.39×10−20 cm2, Ω6=0.74×10−20 cm2 for π-polarization, and Ω2=1.77×10−20 cm2, Ω4=1.44×10−20 cm2, Ω6=0.65×10−20 cm2 for σ-polarization. The emission cross-section σem was calculated to be 4.75×10−21 cm2 for π-polarization at 1536 nm and 6.30×10−21 cm2 for σ-polarization at 1537 nm. The investigated results showed that Er3+:Sr3Y(BO3)3 crystal may be regarded as a potential laser host material for 1.55 μm IR solid-state lasers.  相似文献   

17.
Ion bombardment is a suitable tool to improve the physical and chemical properties of polymer surface. In this study UHMWPE samples were bombarded with 130 keV He ions to the fluences ranging from 1 × 1012 to 1 × 1016 cm−2. The untreated and ion beam modified samples were investigated by photoluminescence, and ultraviolet-visible (UV-vis) spectroscopy. Remarkable decrease in integrated luminescence intensity with increasing ion fluences was observed. The reduction in PL intensity with increase of ion fluence might be attributed to degradation of polymer surface and formation of defects. The effect of ion fluence on the optical properties of the bombarded surfaces was characterized. The values of the optical band gap Eg, and activation energy Ea were determined from the optical absorption. The width of the tail of the localized states in the band gap (Ea) was evaluated using the Urbach edge method. With increasing ion fluences a decrease in both the energy gap and the activation energy were observed. Increase in the numbers of carbon atoms (N) in a formed cluster with increasing the He ion fluence was observed.  相似文献   

18.
Fourier transform spectra of mono-13C ethylene have been recorded in the 8.4-14.3-μm spectral region (700-1190 cm−1) using a Bruker 120 HR interferometer at a resolution of 0.0017 cm−1 allowing the extensive study of the set of resonating states {101, 81, 71, 41, 61}. Due to the high resolution available as well as the extended spectral range involved in this study, a much larger set of line assignments are now available. The present analysis has lead to the determination of more accurate spectroscopic constants, including interaction constants, than were obtained in earlier studies. In particular, the following band centers were derived: ν0(ν10) = 825.40602(30) cm−1, ν0(ν8) = 932.19572(15) cm−1, ν0(ν7) = 937.44452(10) cm−1, ν0(ν4) = 1025.6976(14) cm−1. Finally a synthetic spectrum was generated leading to the assignment of a number of 13C12CH4 lines observed in an earlier heterodyne spectroscopic study.  相似文献   

19.
The two-channel thermal decomposition of toluene, C6H5CH3 → C6H5CH2 + H (1) and C6H5CH3 → C6H5 + CH3 (2), was investigated in shock tube experiments over the temperature range of 1400-1780 K at a pressure of 1.5 (±0.1) bar. Rate coefficients for reactions (1) and (2) were determined by monitoring benzyl radical (C6H5CH2) absorption at 266 nm during the decomposition of toluene diluted in argon and modeling the temporal behavior of the benzyl concentration with a kinetic model. The first-order rate coefficients determined at a pressure of 1.5 bar are expressed by k1(T) = 2.09 × 1015 exp (−87510 [cal/mol]/RT) [s−1] and k2(T) = 2.66 × 1016 exp (−97880 [cal/mol]/RT) [s−1]. The resulting branching ratio, k1/(k1 + k2), ranges from 0.8 at 1350 K to 0.6 at 1800 K.  相似文献   

20.
The absorption spectrum of ozone, 16O3, has been recorded by CW-cavity ring down spectroscopy in the 6625-6830 cm−1 region. The typical sensitivity of these recordings (αmin ∼ 3 × 10−10 cm−1) allows observing very weak transitions with intensity down to 2 × 10−28 cm/molecule. 483 and 299 transitions have been assigned to the 2ν1 + 3ν2 + 3ν3A-type band and to the 2ν1 + 4ν2 + 2ν3B-type band, respectively, which are the highest frequency bands of ozone recorded so far under high resolution. Rovibrational transitions with J and Ka values up to 46 and 12, respectively, could be assigned. Despite well-known difficulties to correctly reproduce the energy levels not far from the dissociation limit, it was possible to determine the parameters of an effective Hamiltonian which includes six vibrational states, four of them being dark states. The line positions analysis led to an rms deviation of 8.5 × 10−3 cm−1 while the experimental line intensities could be satisfactorily reproduced. Additional experiments in the 5970-6021 cm−1 region allows detecting the (233) ← (010) hot band reaching the same upper state as the preceding cold band. From the effective parameters of the (233) state just determined and those of the (010) level available in the literature, 329 transitions could be assigned and used for a further refinement of the rovibrational parameters of the effective Hamiltonian leading to a value of 7.6 × 10−3 cm−1 for the global rms deviation. The complete list of the experimentally determined rovibrational energy levels of the (233), (242), and (520) states is given. The determined effective Hamiltonian and transition moment operators allowed calculating a line list (intensity cut off of 10−28 cm/molecule at 296 K), available as Supplementary material for the 6590-6860 and 5916-6021 cm−1 regions. The integrated band strength values are 1.75 × 10−24 and 4.78 × 10−25 cm/molecule at 296 K for the 2ν1 + 3ν2 + 3ν3A-type band and to the 2ν1 + 4ν2 + 2ν3B-type band, respectively, while the band intensity value of the (233) ← (010) is estimated to be 1.03 × 10−24 cm/molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号