首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
纳米尺度物质的生物效应和安全性   总被引:7,自引:0,他引:7  
纳米尺度的物质包括碳纳米管、纳米二氧化碳、纳米三氧化铁和四氧化三铁等,它们与包括氨基酸在内的生物分子和细胞以及动物整体的相互作用受到广泛关注和研究.结果表明这些纳米材料都能和这些生物成分和生物体相互作用,具有明显的生物效应,能够影响生物分子的结构或构象、细胞的生长,且它们的毒性都较小.但从我们获得的资料看,有些纳米物质对生物的整体特性和人的健康有较重的影响.这是我们应该引起严重注意的.  相似文献   

2.
以小搏大--生物医药学中的纳米科技   总被引:1,自引:0,他引:1  
武振羽  樊海明  曹立  付立民  李前树  邹炳锁 《物理》2002,31(10):635-641
文章对国内外纳米技术在生物、医学上应用的最新进展做了评述,所涉及的领域包括磁性纳米粒子标记、发光量子点与胶珠标记、微流体测量、药物体测量、药物传递与辅助治疗、生物分子或DNA的标记与测量,并对未来的发展提出了自己的看法。  相似文献   

3.
纳米科技——癌症治疗新攻略   总被引:1,自引:0,他引:1  
塔金星 《物理与工程》2006,16(5):31-33,62
纳米科技(NST,即Nanometer Scale Science and Technology)是研究尺寸在0.1nm~100nm范围内的物质运动规律、相互作用和实际应用的一门高新科技.在21世纪前几十年将迅猛发展,纳米技术势必成为推动社会经济各领域快速发展的主导技术之一.随着纳米技术的发展,纳米技术在医疗方面的运用已经越来越广泛.本文将主要阐述纳米科技在癌症治疗中的应用及研究进展情况.  相似文献   

4.
纳米尺寸电子系统的研究与单电子库仑阻挡(COULOMB BLOCKADE)结构,单电子三极管,分子开关的实现和应用有着十分密切的关系.近年来关于纳米系统电流传输性质的研究引起了越来越多的关注.曾经普遍应用的LANDAU-DFT方法计算出的电流与实验结果相差几个量级,  相似文献   

5.
纳米光学和生物单分子探测   总被引:3,自引:0,他引:3  
白永强  刘丹  朱星 《物理》2004,33(12):899-906
纳米光学技术展示了纳米级探测本领,同时生物单分子探测所需要分辨尺度也是纳米数量级的,因此在生物单分子探测过程中,纳米光学发挥了巨大的作用.文章介绍了与生物单分子探测技术相关的纳米光学技术,包括量子近场光学探针技术、近场光学成像技术(包括扫描近场光学显微术及全内反射荧光显微术)和激光光钳测控技术及它们在生物单分子探测上的进展,从而在染色、成像、测控三个方面展示了纳米光学技术在生物方面的应用,并对其未来的发展方向进行了展望.  相似文献   

6.
 纳米技术将会带来一场技术革命,从而引起21世纪又一场产业革命。纳米是一种度量单位,1纳米为十亿分之一米。纳米结构是指尺寸在100纳米以下的微小结构,在该水平上对物质和材料进行研究和处理的技术,称为纳米技术。纳米技术或称毫微米技术,是在单个原子和分子层次上对物质存在的种类、数量和结构形态等进行精确的观测、识别与控制技术的研究与应用。纳米技术能够从汽车车身应用到车轮,几乎可以涵盖一辆汽车的全部,纳米技术在汽车材料上的广泛应用,也将使汽车产生质的飞跃。就目前来说,只有纳米技术,才是新世纪汽车发展的核心技术。  相似文献   

7.
 异军突起的纳米技术“纳米”是英文namometer的译名,是一种长度单位,1纳米为百万分之一毫米,即1毫微米,也就是十亿分之一米,约相当于45个原子串起来那么长。纳米结构通常是指尺寸在100纳米以下的微小结构。科学家们在研究物质构成的过程中,发现在纳米尺度下隔离出来的几个、几十个可数原子或分子,明显表现出许多新的特性,而利用这些特性制造具有特定功能设备的技术,就称为纳米技术。纳米技术其实就是一种用单个原子、分子制造物质的技术。从迄今为止的研究状况看,纳米技术分为三种。  相似文献   

8.
纳米技术,即“纳米尺度的科学和技术”,纳米科学技术是现代物理学等多门基础学科与先进科学技术相结合的产物,是近20年来迅速发展起来的一门新的学科.  相似文献   

9.
雷皓  魏黎  刘买利 《物理》2006,35(4):294-298
纳米尺度物质的生物效应研究是近年来在纳米科技发展过程中派生出来的一个崭新的、发展很快的且多学科高度交叉的领域,需要把纳米科学、物理学、化学以及生物医学等多学科的研究手段结合起来,进行综合研究.核磁共振波谱与成像,作为一种原位、无损、动态、实时、多信息的检测手段,在此领域的研究中将发挥不可或缺的重要作用.文章分3个方面简要介绍核磁共振波谱与成像技术在纳米尺度物质生物效应研究中的应用:(1)纳米尺度物质在生物组织及个体内的检测与分析;(2)纳米尺度物质与生物大分子相互作用的核磁共振波谱研究;(3)纳米尺度物质生物效应的核磁共振代谢组学研究.  相似文献   

10.
脱氧核糖核酸 (DNA)和蛋白质是构成生命体最为重要的两类生物大分子 .随着科学技术的快速发展 ,越来越多的纳米技术被用来研究这些生物大分子 .文章详细介绍了近来利用纳米孔技术研究DNA的一些进展 .结合作者近期利用聚焦离子束 (FIB)制作纳米孔的工作 ,提出了利用纳米孔解离核小体的设想 .如果能够利用纳米孔将双螺旋DNA从组蛋白八聚体上剥离下来 ,并探测这一过程 ,将揭示核小体中包含的许多生物化学、物理信息 .文章对此进行了较为详细的分析 :处于电场中的核小体在电场的作用下 ,DNA分子穿越纳米孔 ,同时由于纳米孔的阻挡力 ,使组蛋白不能穿越 ,从而诱使DNA从组蛋白八聚体上分离下来 .通过准确检测DNA分子穿孔过程中引起的电流阻塞效应 ,可将DNA与组蛋白的相互作用的一些性质反映出来  相似文献   

11.
The subject matter of this paper concerns advanced techniques of imaging used in diagnosis and minimally invasive procedures applied in non-operable cases of the digestive tract tumour therapy. The role of optical techniques in current medical imaging is significant. Optical properties of transilluminated or illuminated tissues and organs depend on strong light absorption and scattering. Numerous issues related to the result interpretation still remain unsolved. Effectiveness and precision can be especially improved when some combined methods of imaging are used. Videoendoscopy imaging, X-ray imaging, and endoscopic ultrasound imaging are three complementary methods applied during the interventions described in this work. All interventions have concerned with the upper part of the digestive tract. Especially, interdisciplinary issues of combined medical imaging are presented using some examples of a modern approach to imaging of esophagus and biliary stenting. The selected examples of effects obtained during interventions assisted by combined imaging of the operation site are presented. The operator can have great control over the appearance of desirable effects as well as undesirable complications in order to work comfortably and safe.  相似文献   

12.
Radionuclide tumour therapy with ultrasound contrast microbubbles   总被引:6,自引:0,他引:6  
Radionuclides have shown to be effective in tumour therapy. However, the side effects determine the maximum deliverable dose. Recently, it has been demonstrated that cells can be permeabilised through sonoporation using ultrasound and contrast microbubbles. The use of sonoporation in treatment of tumours may increase the anti-tumour efficacy of radionuclide treatment. The mechanisms as well as the effects sonoporation in tumour treatment strategies are still not understood. The purpose of this study is to determine the effects of ultrasound and contrast microbubbles on the internalisation of the radionuclide (111)In-DOTA-Tyr(3)-octreotate in tumour cells. To optimize ultrasound settings for ultrasound adjunctive tumour therapy we incubated rat pancreatic CA20948 tumour cells with two dyes (MW 40 and 70 kDa). The uptake levels were compared with cells treated with ultrasound and contrast microbubbles for different ultrasound settings. The highest molecular uptake was found with addition of contrast microbubbles (ratio of 10 bubbles to 1 cell) and with the ultrasound setting: duty cycle 0.013%, mechanical index (MI) 0.42, and treatment times of 30 and 60 min. These settings were used to enhance the internalisation of (111)In-DOTA-Tyr(3)-octreotate. We found a 160% higher internalisation of (111)In-DOTA-Tyr(3)-octreotate by tumour cells adjunctively treated with ultrasound and contrast microbubbles compared to untreated cells. These results show that adjunctive tumour treatment with the radionuclide (111)In-DOTA-Tyr(3)-octreotate and ultrasound contrast microbubbles may be feasible. When using adjunctive ultrasound contrast microbubble treatment, a lower radionuclide doses are required to reach the same anti-tumour effect.  相似文献   

13.
针对兰州重离子研究装置所加速的120MeV/u 12C离子束,利用模拟退火优化算法进行了Bragg峰展宽的剂量优化.取相同的展宽区域(30mm),4种不同的步长(2,1,0.5,0.25mm)进行Bragg峰展宽模拟.对所得到的剂量平均值,均方差,入射口剂量,峰坪比等优化结果的参数做了比较.讨论了重离子束治癌临床上最优的Bragg峰展宽模型的选取.  相似文献   

14.
热凝固对生物组织热物性影响的实验研究   总被引:6,自引:0,他引:6  
本文以蛋清为实验对象,研究了热凝固对生物组织热物性的影响,测量方法为阶跃温升法。实验结果表明,热 凝固后,蛋清的热导率平均上升了6.60%。因此,生物组织的热物性不但与其化学组成有关,还与其物理状态有关;采用 热凝固的方法治疗肿瘤时,应考虑热凝固对其热物性的影响,从而实现更加有效的治疗。  相似文献   

15.
The side effects of chemotherapy are mainly the poor control of drug release. Magnetic nanoparticles(MNPs) have super-paramagnetic behaviors which are preferred for biomedical applications such as in targeted drug delivery, besides, in magnetic recording, catalysis, and others. MNPs, due to high magnetization response, can be manipulated by the external magnetic fields to penetrate directly into the tumor, thus they can act as ideal drug carriers. MNPs also play a crucial role in drug delivery system because of their high surface-to-volume ratio and porosity. The drug delivery in tumor therapy is related to the sizes, shapes, and surface coatings of MNPs as carriers. Therefore, in this review, we first summarize the effects of the sizes, shapes, and surface coatings of MNPs on drug delivery, then discuss three types of drug release systems, i.e., p H-controlled, temperature-controlled, and magnetic-controlled drug release systems, and finally compare the principle of passive drug release with that of active drug release in tumor therapy.  相似文献   

16.
It is generally accepted that psychogenic voice disorder (PVD) is aresult of psychosocial stress; however, systematic studies of etiological factors in this condition are few. Furthermore, although immediate effects of therapy are estimated to be good, relapses are frequent, and the long-term effects of therapy are not known. The present prospective and longitudinal study on 30 patients was thus focused on possible etiological factors, the course of therapy, and the long-term results of therapy for PVD. The results indicate that interpersonal conflicts related to family and work are of basic importance in precipitating this condition. PVD is interpreted as a specific disorder of verbal emotional expression. Our therapy model in which vocal exercises are performed, together with training of communicative skills, seems rewarding. Relapses were not reported in 88% of the patients during the followup period of 1.9-8.4 years after therapy.  相似文献   

17.
Developing minimally invasive brain surgery by high-intensity focused ultrasound beams is of great interest in cancer therapy. However, the skull induces strong aberrations both in phase and amplitude, resulting in a severe degradation of the beam shape. Thus, an efficient brain tumor therapy would require an adaptive focusing, taking into account the effects of the skull. In this paper, we will show that the acoustic properties of the skull can be deduced from high resolution CT scans and used to achieve a noninvasive adaptive focusing. Simulations have been performed with a full 3-D finite differences code, taking into account all the heterogeneities inside the skull. The set of signals to be emitted in order to focus through the skull can thus be computed. The complete adaptive focusing procedure based on prior CT scans has been experimentally validated. This could have promising applications in brain tumor hyperthermia but also in transcranial ultrasonic imaging.  相似文献   

18.
Nanoparticles can be used in biomedical applications, where they facilitate laboratory diagnostics, or in medical drug targeting. They are used for in vivo applications such as contrast agent for magnetic resonance imaging (MRI), for tumor therapy or cardiovascular disease. Very promising nanoparticles for these applications are superparamagnetic nanoparticles based on a core consisting of iron oxides (SPION) that can be targeted through external magnets. SPION are coated with biocompatible materials and can be functionalized with drugs, proteins or plasmids. In this review, the characteristics and applications of SPION in the biomedical sector are introduced and discussed.  相似文献   

19.
The evolutionary dynamics of a system of cancerous cells in a model of chronic myeloid leukemia (CML) is investigated by a statistical approach. Cancer progression is explored by applying a Monte Carlo method to simulate the stochastic behavior of cell reproduction and death in a population of blood cells which can experience genetic mutations. In CML front line therapy is represented by the tyrosine kinase inhibitor imatinib which strongly affects the reproduction of leukemic cells only. In this work, we analyze the effects of a targeted therapy on the evolutionary dynamics of normal, first-mutant and cancerous cell populations. Several scenarios of the evolutionary dynamics of imatinib-treated leukemic cells are described as a consequence of the efficacy of the different modelled therapies. We show how the patient response to the therapy changes when a high value of the mutation rate from healthy to cancerous cells is present. Our results are in agreement with clinical observations. Unfortunately, development of resistance to imatinib is observed in a fraction of patients, whose blood cells are characterized by an increasing number of genetic alterations. We find that the occurrence of resistance to the therapy can be related to a progressive increase of deleterious mutations.   相似文献   

20.
Reflecting signals off of targets is a method widely used to locate objects, but the reflected signal also contains information that can be used to identify the object. In radar or sonar, the signal amplitudes used are small enough that only linear effects are present, so we can consider the effect of the target on the signal as a linear filter. Using the known effects of linear filters on chaotic signals, we can create a reference that allows us to match a particular target to a particular reflected signal. Furthermore, if some parts of this "filter" vary only slowly as the aspect angle of the object changes, we can produce a reference that averages out the parts that are highly angle dependent so that one reference can be used to identify the target over a range of angles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号