首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
血管低温保存是满足临床移植的重要保证手段。从影响动脉血管低温保存的因素,低温保存后的活性恢复、细胞水平上的血管低温损伤机理、冻结/复温过程中的热物理性质和力学性质变化,以及低温断裂现象等方面综述了血管低温保存研究进展。  相似文献   

2.
生物材料的低温保存一般都要经历降温过程、低温储存过程及复温过程,其中降温过程中对生物细胞的影响最大.每一种生物细胞都有自己合适的降温速率,如能满足其这种降温速率,细胞所受到的低温损伤最小,则生物细胞的复活率最高.文中介绍程序控制变速降温装置的主要结构及几种典型生物体的降温过程.最后,对器官的低温保存进行分析讨论.  相似文献   

3.
低温生物医学与热物理   总被引:8,自引:0,他引:8  
华泽钊 《物理与工程》2001,11(6):1-4,18
本文阐述了低温生物学、低温医学与热物理的关系;着重讨论生物体低温保存的问题,细胞和组织的低温损伤是溶液冻结相变过程所引起的冰晶损伤和高浓度溶液的损伤;这个过程和传热传质密切相关;而低温保存的机理则是溶液的非晶态化(玻璃化)。本文还讨论了低温生物医学当前的研究热点,以及其中的热物理问题。  相似文献   

4.
生物材料的低温保存最为重要的是降温冷却过程。介绍"冻结线跟踪法"的降温冷却及控制方法,即生物材料在降温冷却的同时,逐步提高低温保护剂溶液的浓度,这可避免细胞内外冰晶的产生,从而减少对细胞的冷冻损伤,克服大体积生物材料低温保存的困难。最后,对生物材料低温保存的应用前景进行讨论。  相似文献   

5.
细胞尺度冰晶生长行为的相场数值模拟   总被引:3,自引:0,他引:3  
细胞尺度的冻结损伤机制是实施低温手术及生物材料低温保存的关键,本文围绕低温条件下的微尺度冻结问题,应用相场模型对冰晶的形成过程进行了数值模拟,明确了相场模型相关重要参数的确定方法,并最终得到各向同性条件下,二维平面内冰晶的生长过程及其生长特点.  相似文献   

6.
液相线跟踪法是生物材料玻璃化保存的一种手段。降温时通过边降温边提高低温保护剂浓度、复温时边升温边降低低温保护剂浓度的方式,该方法能够有效减轻降温/复温过程中高浓度保护剂对细胞的毒性损伤,从而提高生物材料低温保存的成活率。文中介绍可实现液相线跟踪的低温保存装置,该装置以液氮为冷源、采用计算机控制。以二甲亚砜-氯化钠-水溶液为例进行的实验表明,该装置能够实现温度和保护剂浓度的良好匹配,二甲亚砜的最终浓度达到了玻璃化所需浓度。  相似文献   

7.
基于薄液膜蒸发的超高速冷冻方法初探   总被引:1,自引:0,他引:1  
玻璃化冷冻方法是细胞超低温保存的有效冷冻方法之一.在细胞的玻璃化冷冻过程中,降温速率的提高有利于细胞内外溶液玻璃化程度的增加,同时可以降低低温保护剂的浓度,进而减少低温保护剂对细胞的毒性损伤和渗透性损伤.本文尝试将薄液膜蒸发这种高效相变传热方式与液氮的低温冷却过程相结合,发展了一种超高速、超低温冷冻降温方法.初步的实验结果表明:冷冻载体从10℃降到-180℃,其平均冷却速率达到了148052℃/min。  相似文献   

8.
生物材料低温保存过程及最新进展   总被引:4,自引:0,他引:4  
史英  曾叶  虞华  章忠敏 《低温与超导》2006,34(2):141-144
介绍了生物材料低温保存所需经历的三个阶段,即降温过程、储存过程、复温过程。低温保护剂介入低温保存的全过程,这有助于提高生物材料低温保存的存活率,所以选择合适的低温保护剂也很重要。最后还介绍了低温保存的最新进展。  相似文献   

9.
玻璃化冷冻方法是细胞超低温保存的有效冷冻方法之一。降温速率的提高有利于细胞内外溶液玻璃化程度的增加,同时可以降低低温保护剂的浓度,减少低温保护剂对细胞的毒性伤害和渗透性损伤。本文针对冷冻载体在基于薄液膜蒸发的超高速冷却过程中的传热过程进行了优化分析。研究结果显示:细胞悬浮液的传热热阻在总传热热阻中的比重最大,设法减低它是强化细胞冷冻传热过程的有效手段之一;另外液氮蒸发传热系数的提高在一定范围内可以强化冷冻传热过程,但强化效果会随着蒸发传热系数的增加而减小。上述研究成果为基于薄液膜蒸发的玻璃化冷冻新方法走向实用提供了技术保障。  相似文献   

10.
冷冻过程中洋葱细胞胞内冰晶的生长行为研究   总被引:1,自引:0,他引:1  
细胞胞内冰的形成会导致严重的细胞损伤从而导致低温贮存中的诸多问题。生物组织保存前的预冷过程对胞内冰晶的形成具有重要影响。本文分别采用-1,-5,-10,-20,-50,-80℃/min的降温速率预冷洋葱表皮细胞至-7℃接种冰晶.采用高速摄像仪观察冰晶生长过程,发现了三种模式的胞内冰晶生长行为。模式A:细胞壁结晶后继续在边缘结晶;模式B:细胞壁结晶后,向中心扩散,横贯中心位置;模式C:中心首先结晶,扩散至细胞边缘。最后对三种不同过程的冰晶生长速率及细胞变形度进行了计算分析。  相似文献   

11.
纳米晶钛膜中氦注入的保持剂量   总被引:2,自引:1,他引:1       下载免费PDF全文
在从室温到500℃的温度范围内,用卢瑟福质子背散射技术分别测量了不同能量、不同剂量注入的纳米晶钛膜中氦的浓度分布,不同温度时的保持剂量及其释放浓度.发现氦在这种纳米晶粒膜中其氦-钛原子浓度比达到41%—52%时能在室温到100℃的温度下长期稳定保持,若其原子浓度达52%—74%时也能在室温环境有效保持.文中对这种具有大的界面体积比的膜能有效保持氦这种惰性元素的可能机理从能量观点进行了初步探讨. 关键词: 离子注入 纳米晶粒钛膜 氦 保持剂量  相似文献   

12.
为强化微藻生物膜成膜过程中藻细胞与基底黏附,同时解决藻细胞残留造成的基底重复利用性差的问题,用聚N-异丙基丙烯酰胺(PNIPAAm)温缩型凝胶修饰基底。傅里叶红外光谱分析改性表面化学特性;结合微藻培养温度给出适宜藻细胞黏附的基底浸润特性;通过构建热力学模型,明晰温度对藻细胞与温缩型凝胶改性基底界面作用自由能的影响规律,结果表明,随温度从15℃升高到30℃,藻细胞与改性基底的界面作用自由能变从-39 mJ·m-2变化到-67 mJ·m-2,即黏附能力随温度升高而增强。黏附实验表明,随温度从15℃升高到30℃,温缩型凝胶改性基底的藻细胞黏附密度提高了50%,这与热力学模型预测结果吻合,说明该模型对分析温缩型凝胶改性基底藻细胞黏附有重要指导意义。  相似文献   

13.
温度对生物组织模拟液光学特性影响的研究   总被引:4,自引:0,他引:4  
常敏  彭丹  徐可欣 《光学学报》2007,27(6):080-1083
采用牛奶作为生物组织的模拟液,研究温度变化对生物组织光学特性的影响。应用双积分球技术对牛奶在光波波长为1100~1700 nm、温度25~40℃范围内的光学参量进行了测量,分析光学参量随温度的变化规律。结果表明,温度对散射作用的影响比吸收作用更大,随温度的升高,约化散射系数具有明显减小的趋势。与25℃相比,40℃下的约化散射系数下降了约10%;而吸收率的变化趋势不明显且规律复杂。以上研究结果与公开发表的人体离体皮肤组织光学参量随温度变化的研究结果基本一致,从而为深入研究温度对生物组织光学测量的影响提供了理论和实践上的指导。  相似文献   

14.
很多生物大分子的特征振动模式和转动模式都位于太赫兹波段范围内,且太赫兹波的低电子能特性使其在实验过程中不会对待测样品造成破坏,所以可以采用太赫兹技术来鉴别生物样品。在许多研究中,生物样品都是溶液状态,溶液中水和其他分子之间的相互作用涉及很多生物现象,所以研究水的太赫兹特性就显得至关重要。众所周知,水分子是十分常见的极性分子,分子间氢键会与太赫兹波发生强烈的相互作用,从而使得水对太赫兹波有很强的吸收作用,导致利用太赫兹技术研究水溶液中生物样品的动态特性变得相当困难。为了解决这一难题,可以引入微流控技术。微流控技术以能精确操控微尺度流体而著称,其沟道深度可以达到50μm甚至更小。由于微流控技术减小了太赫兹波在流体中的传播距离,从而极大地减小了水对太赫兹波的吸收。本研究采用对太赫兹波具有高透过率的Zeonor 1420R材料制成了夹心式微流控芯片,芯片上微沟道的长度、宽度和深度分别为3 cm,4 mm和50 μm,太赫兹探测区的直径为3 mm。在制作微流控芯片时,利用厚度为50μm的强黏性双面胶代替传统夹心式微流控芯片中的聚二甲基硅氧烷(PDMS)薄膜,使微流控芯片在加热过程中不再有漏液现象。另外,设计了一个温控系统,它由加热片、温度传感器和温控仪构成,该温控系统能够以0.1 ℃的精度控制温度。利用该系统对微流控芯片中的去离子水进行加热,从20~90 ℃每隔5 ℃进行一次太赫兹透射测量,通过对实验数据的分析,发现随着温度升高,水的太赫兹透过率不断减小,说明水对太赫兹波的吸收随着温度的升高而变大。此结果为未来在不同环境温度下利用微流控技术研究液态样品的太赫兹吸收特性提供了先决条件,为未来太赫兹的应用与发展提供技术支持。  相似文献   

15.
太赫兹波的光子能量只有毫电子伏特,远低于各种化学键的键能,因此不会和生物组织发生有害的电离反应;另一方面,由于大部分生物分子转动和振动所具有的特征能量都在太赫兹范围内,所以利用太赫兹波可以对生物分子进行识别。水是生物环境中最重要的液体,生物分子与液态水之间的相互作用决定了其生物活性,因此研究液态水的太赫兹特性就显得十分重要。水作为极性液体,其中的偶极分子-偶极分子间的相互作用和极性分子间的氢键会对太赫兹波产生较大的吸收作用,这就使利用太赫兹技术研究液体环境下的生物分子动力学特性变得相当困难。微流控技术通过改变微流控芯片中液体通道的深度来控制液体样品的厚度,以减少太赫兹波与液体样品的作用距离,从而使水对太赫兹波的吸收大幅减小。利用对太赫兹波的透过率高达95%的Zeonor 1420R材料和双面胶制作了可重复性使用的夹心式微流控芯片,芯片上液体通道的长度、宽度、深度分别为2 cm,5 mm和50 μm。另外,设计制作了一个制冷系统,由制冷片、散热模块、温度传感器、保温箱和温度控制器构成,该制冷系统可以对保温箱的内部环境制冷并在一定程度上保持恒温。在实验过程中,将注满水的微流控芯片置于保温箱中,利用制冷系统对微流控芯片中的水进行制冷处理,从8~-3 ℃每隔1 ℃进行一次太赫兹透射测量,通过对实验数据的分析,发现随着温度降低,水的太赫兹透过率不断增大,说明水对太赫兹波的吸收随着温度的降低而降低。此结果为将来在不同低温环境下利用微流控技术研究液体样品的太赫兹吸收特性打下了基础,为太赫兹在生物领域的应用与发展提供了技术支持。  相似文献   

16.
基于RC电路模型的激光诱导生物组织光热效应   总被引:1,自引:0,他引:1  
李小霞  何俊  韩雪梅 《光学学报》2013,33(1):117001-179
针对激光诱导生物组织温升预测问题提出了一种新的RC电路理论模型。根据基尔霍夫电压定律(KVL)推导了RC电路的系统函数和单位冲激响应,根据单位冲激响应和矩形输入信号的卷积得到RC电路的零状态响应模型,由激光照射下生物组织温度实验结果确定模型中的两个固定参数,提出了两种模型参数计算方法并进行模拟计算。理论计算与实验结果显示温度响应曲线一致,肝脏和肌肉组织峰值温度相对误差范围分别为-0.0557℃~-0.0025℃和0.0139℃~0.0641℃,温度曲线平均相对误差范围分别为0.55%~2.39%和0.38%~0.99%,这种方法较经典的Pennes生物热传输方程模型所需参数少,精度更高,为激光与生物组织光热效应研究提供了一种新方法。  相似文献   

17.
廖宇  简小华  崔崤峣  张麒 《物理学报》2017,66(11):117802-117802
光声测温是一种利用光声效应来进行温度监控的新方法,具有非侵入式、高灵敏度和探测深度较深等优点.但现有的单波长光声测温方法极易受到系统及测量环境干扰而导致测量精度降低.为了解决这一问题,本文提出了一种双波长光声温度测量方法.在光声测温理论的基础上,分析推导了双波长光声测温的基本原理,并进行了仿体及离体组织样品的双波长光声测温实验.实验结果显示,与传统单波长模式相比,双波长模式下的光声温度测量误差明显减小,测量精度平均提高35%以上.研究结果表明双波长光声测温方法能够有效提高光声温度测量的精度和稳定性,可作为一种更精准的光声温度监控方法应用于医疗手术等领域.  相似文献   

18.
为了解决太阳模拟灯阵整体放在真空罐内使用时的导热问题,采用热管导热的方案,设计了专门的氙灯导热机构。计算了液氮系统的导热能力,结果显示,真空罐液氮冷却系统的温度升高ΔT为2074 1 K,小于其过冷度4 K,表明真空罐液氮冷却系统完全可以将太阳模拟灯阵的热量导出。采用热管导热技术,设计了导热机构,用有限元分析法进行了热仿真分析,分析结果表明,氙灯阴阳极温度维持在100 ℃左右,氙灯灯泡维持在655 ℃左右,满足氙灯正常工作的温度条件;积分器和反射镜组件温度维持在200 ℃左右,椭球镜温度维持在135 ℃左右,亦满足正常工作的温度条件,从而验证了热设计的正确性。  相似文献   

19.
采用共蒸发法在不同衬底温度下沉积Cu_2ZnSnSe_4(简称CZTSe)薄膜,分析了衬底温度对CZTSe材料性质及电池性能的影响。研究表明:当衬底温度较低时(380℃),CZTSe薄膜中含有SnSe_x使电池失效;随着衬底温度的升高,CZTSe薄膜的结晶质量明显提升,电池开路电压增加。但当衬底温度达到460℃时,电池的转换效率反而下降;结合CZTSe的生长机理及器件模型分析了电池效率下降可能的原因。最终在衬底温度420℃的条件下制备出效率为3.12%(有效面积0.34 cm~2)的CZTSe太阳电池。  相似文献   

20.
利用热分析技术(TG/DTG)对聚--甲基苯乙烯(PAMS)在氮气气氛下以不同升温速率为条件进行热降解动力学研究。研究结果表明:PAMS的热降解步骤为一步反应,在升温速率为10 ℃/min时,主要失重温度区间为302~343 ℃,热失重速率最大时温度为325 ℃。在同一温度下,随着升温速率的不断提高,主要降解温度向高温区移动。采用了Kissinger,Flynn-Wall-Ozawa及Coats-Redfern方法研究其动力学参数,确定了PAMS的降解活化能在160~220 kJ/mol之间、反应级数为一级。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号