首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure of antiferroelectric Pb2MgWO6 has been studied using neutron diffraction at high pressures to 5.4 GPa at room temperature and energy-dispersive X-ray diffraction at high pressures to 4 GPa in the temperature range 300–400 K. At normal conditions, in Pb2MgWO6, there is an antiferroelectric phase with the crystal structure described by the orthorhombic symmetry with space group Pnma. At temperature T = 313 K and normal pressure or at room temperature and pressure P ~ 0.9 GPa, the crystal under-goes a structural phase transition to the cubic phase with space group $Fm\bar 3m$ (paraelectric phase). The temperature and pressure dependences of the lattice parameters, unit cell volume, and interatomic bond lengths have been obtained, and the thermal expansion coefficients and the bulk moduli have been calculated for the antiferroelectric and paraelectric phases of Pb2MgWO6.  相似文献   

2.
The thermo emf in Czochralski-grown silicon single crystals (Cz-Si) was experimentally studied in a range of pressures up to 20 GPa. The pressure dependences revealed phase transitions in the metallic phase of silicon, which passed from tetragonal to orthorhombic and then to hexagonal lattice. The high-pressure silicon phases, as well as the metallic high-pressure phases in ANB8?N semiconductors, possess conductivity of the hole type. As the pressure decreases, the emf behavior reveals transitions to the metastable phases Si-XII and Si-III. Preliminary thermobaric treatment of the samples at a pressure of up to 1.5 GPa and a temperature of T=50–650°C influences the thermoelectric properties of Cz-Si at high pressures.  相似文献   

3.
Micro‐Raman studies of oxygen‐deficient gray‐colored NaNbO3 single crystals have shown that at room temperature both antiferroelectric P and ferroelectric Q phases are present simultaneously as separate regions tens of micrometers in size. Phase transitions in P and Q regions have been elucidated by dielectric, dilatometric and micro‐Raman studies. For the first time, the sequence of phase transitions between antiferroelectric phase P and ferroelectric Q and N phases has been revealed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
The temperature dependences of the components A 1(2TO) and E(1TO) of the soft ferroelectric mode during phase transitions in single crystals, ceramics, polycrystalline and epitaxial thin films of barium titanate, as well as a superlattice consisting of alternating layers of barium and strontium titanates, have been studied using the Raman spectroscopy method. Abrupt changes in soft mode frequencies have been observed in the single crystal during phase transitions between tetragonal, orthorhombic, and rhombohedral phases. Smoothing of the temperature dependences of soft modes and the coexistence of phases have been observed in ceramics and polycrystalline films. In the epitaxial film, the sequence of structural transformations fundamentally differs from that observed in the single crystal; in the superlattice, the ferroelectric phase is stable to 550 K.  相似文献   

5.
Synchrotron X-ray diffraction studies of the structure of SnTe have been performed at room temperature and high pressures under the conditions of quasihydrostatic compression up to 193.5 GPa created in diamond anvil cells. Two structural phase transitions have been detected at P ≈ 3 and 23 GPa. The first phase transition is accompanied by a stepwise decrease in the volume of the unit cell by 4% because of the orthorhombic distortion of the initial SnTe-B1 cubic structure of the NaCl type. It has been found that two intermediate rhombic phases of SnTe with the space groups Cmcm and Pnma coexist in the pressure range of 3–23 GPa. The second phase transition at 23 GPa occurs from the intermediate rhombic modification to the SnTe-B2 cubic phase with the CsCl structure type. This phase transition is accompanied by an abrupt decrease in the volume of the unit cell by 8%. The pressure dependence of the volumes per formula unit at room temperature has been determined.  相似文献   

6.
The structural stability of the tetragonal and rhombohedral two-dimensional (2D) polymeric phases of C60 was studied under pressures up to 27 GPa at room temperature by means of in situ Raman scattering spectroscopy. The results show that the tetragonal 2D phase undergoes an irreversible transformation in the region of 20 GPa while no pressure-induced transitions were observed for the rhombohedral 2D phase. The obtained data are discussed within the framework of recent numerical calculations, which predict the pressure-induced transformation of the 2D polymeric phases of C60 into three-dimensional (3D) polymers in the pressure range 14–20 GPa.  相似文献   

7.
First-principle calculations using density-functional theory with linearized augmented plane wave method and projector-augmented method have been performed for the high-pressure MnTiO3 polymorphs and their possible dissociation products. Theoretical results demonstrate that ilmenite-type MnTiO3 transforms into perovskite phase at 27 GPa and 0 K. The lithium niobate phase of MnTiO3 is confirmed to be metastable according to its higher Gibbs free energy compared with that of ilmenite at ambient conditions. In ilmenite and lithium niobate phases, MnO6 octahedra become more distorted while TiO6 octahedra become more regular with increasing pressure. In orthorhombic perovskite phase, the structural distortion deviated from the ideal cubic perovskite is enhanced at higher pressure. Based on the non-spin-polarized calculations, perovskite phase MnTiO3 is predicted to dissociate into Fm3?m-MnO+P21/c-MnTi2O5 at 29 GPa.  相似文献   

8.
This work presents a study of Na0.5Bi0.5TiO3 (NBT) by transmission electron microscopy in the 20-370 °C temperature range. A new orthorhombic intermediate phase between the rhombohedral and the tetragonal phases is proposed to account for the occurrence of (oee) superstructure spots. The phase transition from the rhombohedral to the orthorhombic phase occurs via a modulated phase formed by rhombohedral blocks and orthorhombic sheets. It is shown that these latter represent rhombohedral (0 1 0) twin planes. The modulated phase is proposed to explain the antiferroelectric and relaxor behaviors of NBT.  相似文献   

9.
The vibrational and structural properties of Pb(Fe0.5Nb0.5)O3 have been investigated using Raman spectroscopy up to 40 GPa at 300 K and from 300 to 415 K at selected pressures. The measurements reveal three phase transitions, at 5.5, 8.7, and 24 GPa at room temperature. The temperature dependences of the spectra indicate transitions at 1.5 GPa, at 335 and 365 K. The results are consistent with the appearance of an intermediate tetragonal P4mm phase between the ferroelectric R3m and paraelectric Pm‐3m phases. A P–T phase diagram is proposed that allows further insight into the magnetoelectric coupling present in this material. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
We report here high-pressure x-ray diffraction (XRD) studies on tellurium (Te) at room temperature up to 40 GPa in the diamond anvil cell (DAC). The XRD measurements clearly indicate a sequence of pressure-induced phase transitions with increasing pressure. The data obtained in the pressure range 1 bar to 40 GPa fit five different crystalline phases out of Te: hexagonal Te (I) → monoclinic Te(II) → orthorhombic Te (III) → Β-Po-type Te(IV) → body-centered-cubic Te(V) at 4, 6.2, 11 and 27 GPa, respectively. The volume changes across these transitions are 10%, 1.5%, 0.3% and 0.5%, respectively. Self consistent electronic band structure calculations both for ambient and high pressure phases have been carried out using the tight binding linear muffin tin orbital (TB-LMTO) method within the atomic-sphere approximation (ASA). Reported here apart from the energy band calculations are the density of states (DOS), Fermi energy (E f) at various high-pressure phases. Our calculations show that the ambient pressure hexagonal phase has a band gap of 0.42 eV whereas high-pressure phases are found to be metallic. We also found that the pressure induced semiconducting to metallic transition occurs at about 4 GPa which corresponds to the hexagonal phase to monoclinic phase transition. Equation of state and bulk modulus of different high-pressure phases have also been discussed.  相似文献   

11.
The crystal structure and Raman spectra of Pr0.7Ca0.3MnO3 manganite at high pressures of up to 30 GPa and the magnetic structure at pressures of up to 1 GPa have been studied. A structural phase transition from the orthorhombic phase of the Pnma symmetry to the high-pressure orthorhombic phase of the Imma symmetry has been observed at P ∼ 15 GPa and room temperature. Anomalies of the pressure dependences of the bending and stretching vibrational modes have been observed in the region of the phase transition. A magnetic phase transition from the initial ferromagnetic ground state (T C = 120 K) to the A-type antiferromagnetic state (T N = 140 K) takes place at a relatively low pressure of P = 1 GPa in the low-temperature region. The structural mechanisms of the change of the character of the magnetic ordering have been discussed.  相似文献   

12.
 采用DAC高压X光技术,在320 GPa压力下,对碘进行了结构相变的研究。用耐腐蚀材料Mo作封垫,在室温和无保护气氛下装样。采用Mo内标和红宝石荧光测量进行压力校准。结果表明,在21 GPa时,开始发生结构相变,由面心正交相(Ⅰ相),转变为体心正交相(Ⅱ相),体积缩小2%左右。在21~25 GPa之间为两相共存区;在25 GPa以上完全转变为新的高压单相(Ⅱ相)。此相变为可逆相变。  相似文献   

13.
Raman spectroscopic measurements were carried out in the temperature range 10–300 K to understand the low‐temperature antiferroelectric (AFE)–ferroelectric (FE) phase transition in NaNbO3. Several modes in the low wavenumber range were found to disappear, while some new modes appeared across the transition. The temperature dependence of mode wavenumbers suggests that, during cooling, the AFE–FE phase transition begins to occur at 180 K, while the reverse transition starts at 260 K during heating. During cooling, the two phases were found to coexist in the temperature range of 220–160 K. Upon heating, the FE phase is retained up to 240 K and both FE and AFE phases coexist in the temperature range 240–300 K. In contrast to the earlier reports, the present results suggest a different coexistence region and the reverse transition temperature. The reported relaxor‐type FE behaviour over a broad temperature is consistent with the observed coexistence of phases during cooling and heating cycles. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The effect of hydrostatic pressure on a BaF2 crystal was studied within the shell model in the pair-wise potential approximation. The structural phase transition from the cubic to orthorhombic phase was simulated. The behavior of the unit-cell parameters of the α-and β-BaF2 phases under hydrostatic pressure (from 0 to 12 GPa) was investigated. The fundamental vibration frequencies of BaF2 under hydrostatic pressure (0–3.5 GPa) were calculated for both phases. The effect of chemical pressure on the BaF2 crystal was studied by simulating Ba1?x MexF2 mixed crystals (Me=Ca, Sr). It was shown that at impurity concentrations up to 15–20 at. % the lattice constant varies in the same way as it does when hydrostatic pressure increases to P c , which corresponds to a phase transition to the orthorhombic phase. The effect of chemical and hydrostatic pressure on BaF2: Eu2+ doped crystals was also studied. The dependence of the absorption and luminescence zero-phonon line shift on the Eu2+-ligand distance was calculated.  相似文献   

15.
Abstract

Phase transitions of orthorhombic sulfur were investigated above 10 GPa by Raman spectroscopy using red light excitation. Transitions into several phases that have been reported in previous studies using green light excitation, are confirmed. The phase behaviour is observed to depend strongly on the preparation method. In the presence of a pressure transmitting medium (methanol/ethanol, 4:1), a sequence of phases α-S8 → [intermediate phase (“ip”) + S6] → [S6 + high pressure-low temperature phase (“hplt”)] is described and characterized. Without the use of a pressure transmitting medium, the phase sequence α-S8 → [“ip” + “hplt”] + “hplt” is observed. In addition, contributions of amorphous sulfur are detected around 10 GPa, i.e. at pressures below the transformation of α-S8 into the above-mentioned phases. Characteristic Raman spectra of the different phases are extracted and documented over a wide pressure range.  相似文献   

16.
We investigated the high pressure phases of CdF2 by a joint theoretical and experimental study. The structural and electronic properties of CdF2 were extensively explored to high pressure by ab initio calculations based on the density functional theory. A structural phase transition from the fluorite-type  (Fm-3m, Z=4) structure to the cotunnite-type (Pnma, Z=4) structure was estimated below 8 GPa, and this phase transition was examined by the high pressure experiments up to 35 GPa at room temperature. Both high pressure angle dispersive X-ray diffraction and Raman spectroscopy experiments provided convincing evidence to verify the phase transition. Our work makes clear pressure-induced phase transitions and structural information of CdF2 under high pressure.  相似文献   

17.
The crystal and magnetic structures and the vibrational spectra of Pr0.7Sr0.3MnO3 manganite are studied within the pressure range up to 25 GPa by methods of X-ray diffraction and Raman spectroscopy. Neutron diffraction studies have been performed at pressures up to 4.5 GPa. The magnetic phase transition from the ferromagnetic phase (T C = 273 K) to the A-type antiferromagnetic phase (T N = 153 K) is found at P ≈ 2 GPa. This transition is characterized by a broad pressure range corresponding to the phase separation. The Raman spectra of Pr0.7Sr0.3MnO3 measured under high pressures significantly differ from the corresponding spectra of the isostructural doped A1 ? x A′ x MnO3 manganites, (where A is a rare-earth ion and A′ is an alkaline-earth ion) with the smaller average ionic radius 〈r A〉 of A and A′ cations. Namely, the former spectra do not include clearly pronounced stretching phonon modes. At P ~ 7 GPa, there appears the structural phase transition from the orthorhombic phase with the Pnma space group to the orthorhombic high-pressure phase with the Imma symmetry. In the vicinity of the phase transition, anomalies in the pressure dependences of the lattice parameters, unit cell volume, and phonon frequencies corresponding to the characteristic lattice vibration modes are observed.  相似文献   

18.
The absorption spectrum of thin K2ZnI4 films has been investigated in the range of 3–6 eV at temperatures from 90 to 340 K. It is established that this compound belongs to direct-gap insulators; low-frequency exciton excitations are localized in the ZnI4 lattice layers and have a quasi-two-dimensional character. The spectral analysis revealed the existence of two K2ZnI4 modifications, which presumably belong to the monoclinic (I) and orthorhombic (II) phases. The temperature dependences of the spectral position and halfwidth of the low-frequency exciton band in K2ZnI4 revealed the existence of first-order phase transitions at 215 and 225 K in the monoclinic and orthorhombic phases, respectively.  相似文献   

19.
The phase transition from an orthorhombic phase (space group Pnma) to a rhombohedral phase (space group R3m) of the CdHfO3 hafnate is investigated using methods of structural analysis. It is shown that crystal lattices of both phases contain polar structural units (octahedra, cubooctahedra). On this basis, it is assumed that the orthorhombic and rhombohedral phases of the CdHfO3 compound are the antiferroelectric and ferroelectric phases, respectively.  相似文献   

20.
The method of the density functional theory is used to study structural transformations between graphites and diamond-like phases. The calculations have been carried out in two approximations: a local density approximation and a generalized gradient approximation. It is found that the phase transitions of hexagonal graphene layers to a cubic diamond and diamond-like phases must occur at uniaxial compressions of ~57–71 GPa, whereas some diamond-like phases can be obtained from tetragonal graphene layers at significantly lower pressures of 32–52 GPa. The X-ray diffraction patterns have been calculated for the phase transition of graphite I41/amd to tetragonal LA10 phase that takes place at the minimum pressure that can be used for experimental identification of these compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号