首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The crystal structure and Raman spectra of Pr0.7Ca0.3MnO3 manganite at high pressures of up to 30 GPa and the magnetic structure at pressures of up to 1 GPa have been studied. A structural phase transition from the orthorhombic phase of the Pnma symmetry to the high-pressure orthorhombic phase of the Imma symmetry has been observed at P ∼ 15 GPa and room temperature. Anomalies of the pressure dependences of the bending and stretching vibrational modes have been observed in the region of the phase transition. A magnetic phase transition from the initial ferromagnetic ground state (T C = 120 K) to the A-type antiferromagnetic state (T N = 140 K) takes place at a relatively low pressure of P = 1 GPa in the low-temperature region. The structural mechanisms of the change of the character of the magnetic ordering have been discussed.  相似文献   

2.
The crystal and magnetic structure and the Raman spectra in Pr0.7Ba0.3MnO3 manganite have been studied by the neutron diffraction technique at pressures up to 5 GPa as well as by the X-ray diffraction and Raman spectroscopy at pressures up to 30 GPa. The pressure dependence is determined for the lattice parameters, unit cell volume, Mn-O bond lengths in the orthorhombic structure of the Imma symmetry, and bending and stretching vibration modes for oxygen octahedra. In the low-temperature range at pressure P = 1.9 GPa, the magnetic transition from the initial ferromagnetic (FM) ground state (T C = 197 K) to the A-type antiferromagnetic (AFM) state (T N = 153 K) has been revealed. The FM and AFM phases coexist at pressures up to 5.1 GPa and exhibit negative and positive values of the pressure coefficient for the Curie and Néel temperature, respectively (dT C/dP = −2.3 K/GPa and dT N/dP = 8 K/GPa). The pressure dependence of the Curie temperature in Pr0.7Ba0.3MnO3 differs drastically from that observed in other manganites of nearly the same composition with the orthorhombic Pnma and rhombohedral R[`3]cR\bar 3c structures, where the FM phase is characterized by the positive values of dT C/dP. The structural mechanisms of these phenomena are discussed.  相似文献   

3.
The structural and magnetic properties of Nd0.5−xPrxSr0.5MnO3 (x=0, 0.1, 0.2, 0.3, 0.4 and 0.5) system have been investigated. With the substitution of Pr in Nd0.5Sr0.5MnO3, it shows a gradual structure transformation from the Imma orthorhombic symmetry to the tetragonal I4/mcm phase, and the crystallographic transition remains incomplete, even in Pr0.5Sr0.5MnO3. A large bifurcation between zero-field-cooled (ZFC) and field-cooled (FC) susceptibility has been observed below Curie temperature (TC), which is characteristic of coexistence of ferromagnetism (FM) and antiferromagnetism (AFM) at low temperature region. The magnetization of Pr0.5Sr0.5MnO3 is larger than that of Nd0.5Sr0.5MnO3, while Nd0.5Sr0.5MnO3 with more CE-type AFM shows larger magnetization than Nd0.3Pr0.2Sr0.5MnO3, which mixed with CE-type (majority) and A-type (minority) AFM at low temperature, indicating that the magnetization of Nd0.5−xPrxSr0.5MnO3 system is affected by A-site disorder combined with orbital ordering of A-type AFM and CE-type AFM.  相似文献   

4.
High pressure evolution of structural, vibrational and magnetic properties of La0.75Ca0.25MnO3 was studied by means of X-ray diffraction and Raman spectroscopy up to 39 GPa, and neutron diffraction up to 7.5 GPa. The stability of different magnetic ground states, orbital configurations and structural modifications were investigated by LDA + U electronic structure calculations. A change of octahedral tilts corresponding to the transformation of orthorhombic crystal structure from the Pnma symmetry to the Immaone occurs above P ~ 6 GPa. At the same time, the evolution of the orthorhombic lattice distortion evidences an appearance of the e g d x² ? z² orbital polarization at high pressures. The magnetic order in La0.75Ca0.25MnO3 undergoes a continuous transition from the ferromagnetic 3D metallic (FM) ground state to the A-type antiferromagnetic (AFM) state of assumedly 2D pseudo-metallic character under pressure, that starts at about 1 GPa and extends possibly to 20–30 GPa.  相似文献   

5.
Nuetron diffraction studies of high-pressure effects on the crystal and magnetic structure of A1-x A x MnO3 manganites (A = Pr, La; A′ = Sr, Ca, Na) are reviewed. High pressure leads to various changes in the magnetic structure of manganites: the appearance of a new A-type antiferromagnetic (AFM) state in compounds with the initial ferromagnetic (FM) or pseudo-CE type AFM state, such as La1 ? x Ca x MnO3 (x = 0.25, 0.33), Pr1 ? x Sr x MnO3 (x = 0.48), Pr0.7Ca0.3Mn1 ? y Fe y O3 (y = 0, 0.1), Pr1 ? x Na x MnO3 (x = 0.2, 0.25); and the appearance of a new C-type AFM state in the Pr0.44Sr0.56MnO3 compound with the initial A-type AFM state. The observed changes in the magnetic structure and the behavior of the transition temperature to the FM state under high pressure are discussed in the framework of the current theoretical concepts.  相似文献   

6.
The atomic and magnetic structures of the iron-doped Pr0.7Ca0.3Mn1?yFeyO3 manganites (y=0, 0.1) have been studied at high pressures of up to 4 GPa in the temperature range 16–300 K. At normal pressure, Pr0.7Ca0.3MnO3 undergoes a phase transition from the paramagnetic to an antiferromagnetic (AFM) state of the pseudo-CE type and Pr0.7Ca0.3Mn0.9Fe0.1O3 undergoes a phase transition from the paramagnetic to the ferromagnetic state at low temperatures. Partial substitution of Mn atoms by Fe brings about a noticeable decrease in the average magnetic moment per atom. A new A-type AFM state was observed to form in Pr0.7Ca0.3MnO3 at a pressure P≈2.2 GPa and in Pr0.7Ca0.3Mn0.9Fe0.1O3 at 2.7 GPa. This phenomenon may originate from the anisotropy in the compressibility, which causes uniaxial contraction of the oxygen octahedra MnO6 in the structure and provides favorable conditions for the formation of an A-type AFM state. The structural parameters obtained were used to calculate the pressure dependence of bandwidth in the compounds under study.  相似文献   

7.
A theoretical model based on long-range dispersion corrections of the charge density functional is proposed for model Hg2Cl2 calomel crystals, typical representatives of molecular inorganic compounds where the intermolecular interaction is found to play an important role. This model successfully describes the electronic state and the phonon spectrum of the above crystal, predicts the earlier unstudied phase transition at high hydrostatic pressure. Study of the baric behavior of the phonon spectrum with Raman spectroscopy observes the soft mode in the low-symmetry orthorhombic phase with the frequency softening as the pressure rises. Pressures above 9 GPa considerably transform the Raman spectra, indicating a structural phase transition.  相似文献   

8.
A shell model has been used to study the structure, phonon dynamics and phase coexistence of perovskite manganites RMnO3 (R=Tb, Dy, Ho). The calculated crystal structure, Raman and IR frequencies and specific heats are found to be in good agreement with the available experimental data. The phonon density of states, elastic constants, elastic stiffness, shear constants and phonon dispersion curves have been computed for these manganites. A zone center imaginary Au mode is revealed in these phonon dispersion curves, which indicates the occurrence of the metastability of the perovskite phase. The Gibbs free energy values calculated as a function of temperature and pressure for RMnO3 in the orthorhombic phase, when compared with those of the hexagonal phase, reveal the possibility of coexistence of these two phases in the present multiferroic manganites under ambient conditions.  相似文献   

9.
The temperature dependence of the reflectivity spectra of three manganites ceramics with compositions Pr0.7Ca0.3MnO3, Pr0.7Ca0.25Sr0.05MnO3 and Pr0.7Ca0.1Sr0.2MnO3 has been investigated by infrared reflectivity spectroscopy in the wave number range 0.005-1.1 eV. The compound Pr0.7Ca0.25Sr0.05MnO3 which shows the largest conductivity jump at the ferromagnetic-paramagnetic phase transition has been studied in details. The optical conductivity of this compound is deduced from the best fit to reflectivity spectra of a “double-damping Drude” model, itself derived from the factorized form of the dielectric function. Excellent agreement with Kramers-Kronig transformation is reported. The model allows in particular to discriminate the contributions to the optical conductivity of trapped charges (polarons) and mobile charge carriers. Received 20 July 1999 and Received in final form 15 October 1999  相似文献   

10.
Studies of lattice dynamics devoted to wurtzite InN are presented. Raman scattering experiments on both InN thin films and nanometric islands grown by Metal–Organic Vapor Phase Epitaxy (MOVPE) were performed at room temperature. From the Raman spectra recorded from InN films under hydrostatic pressure up to 13 GPa, linear pressure coefficients and the corresponding Grüneisen parameters for both E2 and A1(LO) phonons were extracted for the wurtzite structure up to 11 GPa, close to the starting pressure of the hexagonal to rock-salt phase transition of InN. Spectra at higher pressure suggest that InN undergoes a gradual phase transition, and the reverse transition exhibits a strong hysteresis effect during the downstroke. Then, we discuss recent results on large single InN islands grown on GaN buffer layers, obtained by spatially resolved micro-Raman measurements. The magnitude of the residual strain is estimated, using a recent determination of phonon deformation potentials. It is found to vary linearly as a function of island height.  相似文献   

11.
The crystal and magnetic structures of manganite Pr0.7Ba0.3MnO3 have been studied at high pressures of up to 5.1 GPa and temperatures from 10 to 300 K by means of the neutron diffraction. At normal pressure and a temperature T C = 200 K, a ferromagnetic state forms in Pr0.7Ba0.3MnO3. At high pressures P ≥ 1.9 GPa and T < T N ≈ 153 K, a new antiferromagnetic state of A-type have been observed. Under high pressure, the Curie temperature T C increases with the characteristic quantity dT C/dP ≈ 2.4 K/GPa. A possible reason for the appearance of an A-type antiferromagnetic phase in Pr0.7Ba0.3MnO3 at high pressures may be anisotropic uniaxial compression of oxygen octahedra along the b axis of the orthorhombic structure.  相似文献   

12.
The effect of Pr doping on structural properties and room temperature Raman spectroscopy measurements is investigated in manganites (Eu1−xPrx)0.6Sr0.4MnO3 (0≤x≤1.0) with fixed carrier concentration. The result of the Rietveld refinement of x-ray powder diffraction shows that these compounds crystallize in an orthorhombic distorted structure with a space group Pnma. It is evident that, with increasing Pr substitution, three types of orthorhombic structures can be distinguished. The phonon frequencies of the three main peaks, in room temperature Raman-scattering measurements, have been discussed together with their structural characteristics, such as bond-length, bond-angles, and the change of orthorhombic structure type. With the increase of Pr content, the mode at 491  cm−1 also shows a corresponding change. A step effect becomes evident, which seems to indicate the close dependence between the frequency shift of this mode and the change in crystal symmetry. This further supports the notion that the mode at 491  cm−1 is closely correlated with the Jahn–Teller distortion. Moreover, we have found that the lowest frequency peak (assigned as an A1g phonon mode) depends linearly on the tolerance factor t.  相似文献   

13.
Stability of the linear orthorhombic polymer of C60 under pressure and laser irradiation is studied by Raman scattering and X-ray diffraction measurements. The Raman spectrum at ambient pressure remains unchanged, in the time scale of the experiment, up to an intensity of 3200 W/cm2 of the 514.5 nm line of an Ar+ laser, but irreversible changes are observed at higher intensities. The Raman spectra recorded at increased pressure show similar irreversible changes even at the laser intensity as low as 470 W/cm2. The X-ray diffraction and Raman measurements of the pressure-treated samples, performed after pressure release, show that the nonirradiated material does not exhibit any changes in the crystal structure and phonon spectra. This behavior indicates a pressure-enhanced photo-induced transformation to a new polymeric phase characterized by a Raman spectrum that differs from those of the other known polymeric phases of C60. The Raman spectra of the phototransformed linear orthorhombic polymer of C60 were measured at a pressure of up to 29 GPa. The pressure dependence of the Raman mode frequencies show singularities near 4 GPa and 15 GPa, respectively, related to a reversible phase transition and an irreversible transformation to a metastable disordered phase. The diffuse Raman spectrum of the disordered phase does not exhibit substantial changes with an increase in pressure up to 29 GPa. The high-pressure phase transforms to a mixture of pristine and dimerized C60, after pressure release and exposure to ambient conditions for 30 h. The text was submitted by the authors in English.  相似文献   

14.
The magnetic and magnetoelastic properties of single crystals of electron-doped rare-earth manganites La1?x Sr x MnO3 are studied. Phase transitions from the A-type antiferromagnetic phase to the C-type anti-ferromagnetic phase in a strong magnetic field are revealed in La1?x Sr x MnO3 manganites with a strontium content x = 0.65. A similar phase transition is observed in manganites with a strontium content x = 0.8, at which the La0.2Sr0.8MnO3 manganite is assumed to transform from the C-type antiferromagnetic phase to the G-type antiferromagnetic phase.  相似文献   

15.
The crystal and magnetic structure of Pr0.1Sr0.9MnO3 manganite has been studied by the neutron diffraction at high pressures up to 5 GPa in the temperature range 10?C295 K. At normal pressure and decreasing temperature the appearance of the C-type (T N = 220 K) and G-type (T N = 180 K) antiferromagnetic states occurs, which is accompanied by a structural phase transition from the cubic structure (Pm $ \bar 3 $ m space group) to the tetragonal structure (I4/mcm space group). It is shown that the temperature of the transition to the C-type antiferromagnetic phase increases with pressure with the pressure coefficient dT N/dP = 4.0(5) K/GPa and the temperature of the transition to the G-type antiferromagnetic phase weakly depends on pressure.  相似文献   

16.
The exploration of the magnetic and transport properties of four series of manganese perovskites, Pr0.7Ca0.34?xAxMnO3?δ (A=Sr, Ba), Pr0.7?xLaxCa0.3 MnO3?δ and Pr0.66Ca0.34?x SrxMnO3?δ has allowed four phases with colossal magnetoresistive (CMR) properties to be isolated: Pr0.7Ca0.25Sr0.025MnO3?δ and Pr0.66Ca0.26Sr0.08MnO3?δ that exhibit a variation of resistance of 2.5. 107% and 109% at μ0 H=5 T for T=88 K and 50 K respectively, Pr0.58La0.12Ca0.3 MnO3?δ that exhibits a variation of 6.106% for μ0 H=5 T at T=80 K and Pr0.7Ba0.025Ca0.275MnO3?δ for which a resistance variation of 5.109%, at T=50 K, for μ0 H=5 T is evidenced. for each compound of this series except the barium phase, one observes that the temperature Tmax, which corresponds to the resistance maximum on the R(T) curves in zero magnetic field, increases dramatically as the mean size of the interpolated cations increases, and that the CMR effect correlatively decreases dramatically. The comparison of the two series Pr0.7Ca0.3?xSrxMnO3?δ and Pr0.66Ca0.34?xSrxMnO3?δ shows also the crucial role of the hole carrier density: for a same mean ionic radius of the interpolated cation Tmax is decreased of about 50 K by introducing 0.034 hole per Mn mole.  相似文献   

17.
The structure and dynamics of the crystal lattice of MeF2 fluorites (Me = Ca, Sr, Ba, and Pb) under external hydrostatic compression (0–3.5 GPa) are calculated within the shell model in the pair potential approximation. The first-order structural phase transition from the cubic to the orthorhombic phase in these crystals under pressure is investigated. The effect of chemical pressure on the BaF2 crystal is analyzed by the simulation of mixed crystals, namely, Ba1?xCaxF2 and Ba1?xSrxF2. It is demonstrated that the supercell method, as applied to the simulation of mixed crystals, results in a lower lattice energy per formula unit as compared to the lattice energy obtained by the virtual-crystal method.  相似文献   

18.
A powder neutron diffraction study on the giant magnetoresistive oxides Pr0.70Ca0.3−xSrxMnO3 has been performed versus temperature for x = 0.1 and 0.05. The first one, Pr0.7Ca0.3Sr0.1MnO3, exhibits the smaller R0/RH ratio (100 at 100 K) and evidences a transition from paramagnetic to ferromagnetic state as the temperature decreases (Tc = 170 K). The second sample, Pr0.70Ca0.25Sr0.05MnO3, that exhibits an extremely high R0/RH ratio (2.5 × 105 at 88 K), shows a transition from the paramagnetic state to an antiferromagnetic state and finally to a canted ferromagnetic state. The presence of an intermediate AF state explains the M(T) curves and the exceptional high magnetoresistive effect. The determination of the nuclear structure of these oxides confirms their ‘O3’ oxygen stoichiometry and evidences a contraction of the lattice parameters at the ferromagnetic transition. The evolution of the MnO distances shows a decrease of the Jahn-Teller distortion at the magnetic transition.  相似文献   

19.
Abstract

Raman phonon spectra of 9, 10-dinitroanthracene have been recorded in the pressure range 0-6GPa. No phase transition is detected up to the maximum pressure studied. Quasi Harmonic Lattice Dynamics calculations, based on an atom-atom potential previously modeled on homologous 9,10-disubstituted anthracenes, have been performed. The optimized potential was used to calculate the equilibrium geometry and the lattice phonon frequencies as a function of pressure. The calculated structure at ambient conditions closely resembles the experimental one. The calculated phonon frequencies show a good agreement with the experimental values at all pressures measured.  相似文献   

20.
The heat capacity of three single-crystal samples of La1?x SrxMnO3 (x=0, 0.2, and 0.3) is measured in the temperature range 4–400 K. It is found that the heat capacity undergoes abrupt changes due to the transitions from the antiferromagnetic phase to the paramagnetic phase (x=0) and from the ferromagnetic phase to the paramagnetic phase (x=0.2 and 0.3). The phonon contribution to the heat capacity and the Debye characteristic temperatures for the La0.7Sr0.3MnO3 sample are determined over a wide range of temperatures. The electronic density of states at the Fermi level is evaluated. It is demonstrated that an increase in the strontium concentration x brings about an increase in the electronic density of states at the Fermi level. The contributions of spin waves to the heat capacity and the entropy are estimated under the assumption that the phonon spectrum remains unchanged upon doping with Sr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号