首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
The phase transition of graphite to a diamond-like LA3 phase is simulated by the methods of the density functional theory (DFT). The calculations are performed in the local density approximation (LDA) and the generalized gradient approximation (GGA). It is found that the structural transformation must occur at a pressure of 60 or 74 GPa according to calculations based on the DFT–LDA and DFT–GGA, respectively. The height of the potential barrier separating the structural state corresponding to the LA3 phase from the state corresponding to graphite exceeds 0.13 eV/atom. This indicates the possibility of stable existence of the diamond-like LA3 phase under standard conditions.  相似文献   

2.
The pressure dependences of the thermoelectric power S of Ce samples were measured at pressures P from 0 to 20 GPa in a synthetic diamond cell. The dependence of S on P was found to be nonmonotonic both in the region of transitions from the fcc (γ) phase to the modified fcc (α) phase followed by the transition to the body-centered monoclinic (α″) and the tetragonal (ε) phases at pressures of about 1, 5–6, and 12–15 GPa, respectively, and in the stability region of these phases. The thermoelectric power sign was found to be positive for all high-pressure Ce phases. The found S(P) dependence was compared with the published computational data on the electronic structure of the cerium phases. Cerium was taken as an example to demonstrate the advantage of the thermoelectric studies over other methods of investigation of phase transitions.  相似文献   

3.
Electrical transport and structural characterizations of isoelectronically substituted Ba(Fe0.9Ru0.1)2As2 have been performed as a function of pressure up to ~ 30 GPa and temperature down to ~ 10 K using designer diamond anvil cell. Similar to undoped members of the AFe2As2 (A = Ca, Sr, Ba) family, Ba(Fe0.9Ru0.1)2As2 shows anomalous a-lattice parameter expansion with increasing pressure and a concurrent ThCr2Si2 type isostructural (I4/mmm) phase transition from tetragonal (T) phase to a collapsed tetragonal (cT) phase occurring between 12 and 17 GPa where the a is maximum. Above 17 GPa, the material remains in the cT phase up to 30 GPa at 200 K. The resistance measurements show evidence of pressure-induced zero resistance that may be indicative of high-temperature superconductivity for pressures above 3.9 GPa. The onset of the resistive transition temperature decreases gradually with increasing pressure before completely disappearing for pressures above ~ 10.6 GPa near the T-cT transition. We have determined the crystal structure of the high-T c phase of Ru-doped BaFe2As2 to remain as tetragonal (I4/mmm) by analyzing the X-ray diffraction pattern obtained at 10 K and 9.7 ± 0.7 GPa, as opposed to inferring the structural transition from electrical resistance measurement, as in a previous report [S.K. Kim, M.S. Torikachvili, E. Colombier, A. Thaler, S.L. Bud’ko, P.C. Canfield, Phys. Rev. B 84, 134525 (2011)].  相似文献   

4.
The thermo emf in Czochralski-grown silicon single crystals (Cz-Si) was experimentally studied in a range of pressures up to 20 GPa. The pressure dependences revealed phase transitions in the metallic phase of silicon, which passed from tetragonal to orthorhombic and then to hexagonal lattice. The high-pressure silicon phases, as well as the metallic high-pressure phases in ANB8?N semiconductors, possess conductivity of the hole type. As the pressure decreases, the emf behavior reveals transitions to the metastable phases Si-XII and Si-III. Preliminary thermobaric treatment of the samples at a pressure of up to 1.5 GPa and a temperature of T=50–650°C influences the thermoelectric properties of Cz-Si at high pressures.  相似文献   

5.
The thermophysical properties of oxyfluoride (NH4)3NbOF6 were studied in detail over wide ranges of temperatures and pressures. At atmospheric pressure, a sequence of four structural phase transitions was established with the following changes in entropy: ΔS 1 = Rln 2.7, δS 2 = Rln38.3, ΔS 3 = 0.08R, and ΔS 4 = 0.17R. An external hydrostatic pressure was found to narrow the region of existence of the initial cubic phase. A triple point was detected in the p-T diagram; at a pressure above 0.07 GPa, the transition between the tetragonal and monoclinic phases occurs through a distorted high-pressure phase.  相似文献   

6.
Phase transformations in [111]- and [001]-oriented PbMg1/3Nb2/3O3–29PbTiO3 single crystals have been studied using dielectric and optical measurements before and after applying an electric field. It is shown that the subsequence of phase transitions rhombohedral (R)—tetragonal (T)—cubic (C) phases is observed in nonpolarized samples of both orientations as temperature increases. In the [111]-oriented crystal, an additional intermediate monoclinic phase (it is possible, M a ) is induced after preliminary polarization at room temperature and the RM a TC phase transitions are observed on heating. In the [001]-oriented crystal, after its polarization, the monoclinic phase forms instead of the rhombohedral phase even at room temperature and the M a TC transitions occur on heating. The results are discussed from the point of view of the existence polar nanoregions with different local symmetries in a glasslike matrix.  相似文献   

7.
The crystal structure of iron-doped barium titanate BaTi1–x Fe x O3 is studied by neutron diffraction in the range of 0 ≤ x ≤ 0.12. At low concentrations of iron, x < 0.01, and at room temperature, these compounds have a polar structure with tetragonal symmetry with space group P4mm. The temperature of the transition of the tetragonal ferroelectric phase into the cubic paraelectric phase with space group Pm \(\bar 3\) m for an iron concentration of x = 0.01 is 390 K (for pure BaTiO3, it is 410 K). At an iron concentration of x = 0.07, the crystal structure of the studied compounds varies, and it is described by the centrosymmetric hexagonal space group P63/mmc. The structural parameters of various phases of compound BaTi1–x Fe x O3 are determined from the experimental data.  相似文献   

8.
We employed density-functional theory (DFT) within the generalized gradient approximation(GGA) to investigate the ZrTi2 alloy, and obtained its structural phase transition,mechanical behavior, Gibbs free energy as a function of pressure, P-V equation of state,electronic and Mulliken population analysis results. The lattice parameters andP-V EOS for α, β and ω phases revealed by ourcalculations are consistent with other experimental and computational values. The elasticconstants obtained suggest that ω-ZrTi2 and α-ZrTi2 are mechanically stable, and that β-ZrTi2 is mechanically unstableat 0 GPa, but becomes more stable with increasing pressure. Our calculated resultsindicate a phase transition sequence of αωβ forZrTi2. Both thebulk modulus B and shear modulus G increase linearly withincreasing pressure for three phases. The G/B values illustrated goodductility of ZrTi2alloy for three phases, with ω<α<β at0 GPa. The Mulliken population analysis showed that the increment of d electron occupancystabilized the β phase. A low value for B '0 is the feature of EOS for ZrTi2 and this softness in the EOS isrepresentative of pressure induced s-d electron transfer.  相似文献   

9.
The crystal and magnetic structures of Fe1.087Te have been studied by neutron powder diffraction in the temperature range from 1.7 to 80 K at pressures of  ≈0.4 and ≈1.2 GPa. No symmetry change of the tetragonal paramagnetic ambient pressure phase (space group P4/nmm) was observed for temperatures above 60 K and pressures up to  ≈1.2 GPa. A novel pressure-induced phase of Fe1.087Te having orthorhombic symmetry (space group Pmmn) and incommensurate antiferromagneticbicollinear order was observed in the temperature range from 50 to 60 K at  ≈1.2 GPa. The known monoclinic ambient pressure phase of Fe1.087Te (space group P2 1/n) with commensurate antiferromagnetic order was found to be stable up to at least  ≈1.2 GPa at low temperature.  相似文献   

10.
The kinetics of electric field-induced nucleation of ordered ferroelectric phases from a mixed glassy relaxor state has been studied in a number of single-crystal (1–x)PbMg1/3Nb2/3O3xPbTiO3 (PMN–xPT) solid solutions (x = 29, 33, 35%) lying in a morphotropic phase region. It is shown that the formation of these phases and fast establishment of a macroscopic polarization are preceded by some delay time, depending on the electric field strength and temperature. It is found that the monoclinic phase is thermodynamically stable at room temperature in all the compounds in the time (~3000 s) and electric field (~1 kV/cm) ranges under study, whereas the monoclinic phase of the compound with x = 35% transforms, at temperatures near the temperature of the morphotropic phase transition after insignificant time interval of ~100 s, to another stable ferroelectric tetragonal phase.  相似文献   

11.
Local density approximation (LDA) and Green function effective Coulomb (GW) calculations are performed to investigate the effect of electronic correlations on the electronic properties of both graphene and graphane. The size of band gap in graphane increases from 3.7 eV in LDA to 4.9 eV in GW approximation. By calculating maximally localized Wannier wave functions, we evaluate the necessary integrals to get the Hubbard U and the exchange J interaction from first principles for both graphene and graphane. Our ab-initio estimates indicate that in the case of graphene, in addition to the hopping amplitude t ~ 2.8 eV giving rise to the Dirac nature of low lying excitations, the Hubbard U value of ~8.7 eV gives rise to a super-exchange strength of J AFM ~ 3.5 eV. This value dominates over the direct (ferromagnetic) exchange value of J FM ~ 1.6 eV. This brings substantial Mott-Heisenberg aspects into the problem of graphene. Moreover, similarly large values of the Hubbard and super-exchange strength in graphane suggests that the nature of gap in graphane has substantial Mott character.  相似文献   

12.
The isothermal magnetization of the Bi1 – xHo x FeO3 (x = 0?0.2) multiferroic has been studied at a hydrostatic pressure up to 9 GPa in the range of room temperatures. A new anomaly at PC ≈ 3.81 GPa related to intermediate phases between the structural transition R3cPnma has been found against the background of the pressure-induced antiferromagnetic ordering in BiFeO3 (BFO) at P ≈ 2.59 GPa. It is established that the ferromagnetic behavior under pressure depends on the Ho impurity concentration: PC decreases at 0.05 ≤ x ≤ 0.1 because of the decrease in R3c bond lengths in the structure, and the stabilization of ferromagnetism is implemented at 0.1 ≤ x ≤ 0.2 probably because of the coexistence of the R3c and Pnma phases. The results of studies indicate that, in Bi1 – xHo x FeO3 with x = 0.2, the transition pressure PC = 3.7 GPa exceeds the values for BFO doped with other 4f elements (Eu, Y, Sm) in the region R3cPnma of the transition.  相似文献   

13.
The energies of formation of vacancies in the carbon and silicon sublattices, the independent elastic constants, the all-round compression, shear and Young’s moduli, and the anisotropy coefficients are determined for the complete and nonstoichiometric cubic phases of 3C-SixCy (x, y = 1.0–0.75) by ab initio methods of the band theory. In the formalism of the density functional perturbation theory (DFPT), the phonon dispersion dependences are obtained for these phases (the comparison with the experiment is given for the complete phase). It is shown that the mechanical characteristics of the phases become strongly anisotropic upon the transition from 3C-SiC0.875 to 3C-SiC0.75. It is established from the analysis of the phonon dispersion curves that the 3C-SiC0.875 and 3C-SiC0.75 phases, in contrast to the complete 3C-SiC phase, are dynamically unstable at T = 0 K.  相似文献   

14.
The phase composition, microstructure, and dielectric, ferroelectric, magnetic, and magnetoelectric properties of bulk ceramic (1 – x)PZT–xNiFe1.9Co0.02О4 – δ composites with 3–0 connectivity have been studied. Using X-ray diffraction and electron microscopy, it has been established that the ferrimagnetic (spinel- like) and ferroelectric (tetragonal perovskite-like) phases separately exist in the composites of all compositions. The simultaneous existence of ferroelectric and ferrimagnetic properties in the composites is confirmed by measuring their P(E) and σ(B) hysteresis loops and studying the temperature dependences of dielectric and magnetic properties. The synthesized composites have high magnetoelectric characteristics: their voltage coefficient at x = 0.4 is 215 mV/A at a frequency of 1 kHz and 130 V/A at an electromechanical resonance frequency of 380 kHz.  相似文献   

15.
A study has been made of the effect of a dc electric field (0 < E < 4 kV/cm) on the optical transmittance of single-crystal compounds PbMg1/3Nb2/3O3-xPbTiO3 (PMN-xPT) located at the boundaries of the morphotropic region (x = 32.0 and 36.5%) and directly at the center of the morphotropic region (x = 35%). It is shown that, at temperatures close to the morphotropic phase transition point, the electric field induces two phase transitions in PMN-32PT and PMN-35PT crystals and only one phase transition in PMN-36.5PT. The tetragonal (T) phase induced in all three compounds remains stable after the electric field is removed only in crystals with x = 35.0 and 36.5%, whereas the T phase is metastable and transforms into the monoclinic M c phase after the field is switched off in the PMN-32PT crystals lying at the boundary of the morphotropic region on the rhombohedral side. It is found that the electric-field-induced intermediate phase M c in PMN-35PT is inhomogeneous and that M c transforms into the tetragonal phase in a continuous transition. It is suggested that only the presence of a third orthorhombic phase can account for the continuous character of the transition between the M c and T phases in PMN-35PT crystals. The results obtained are interpreted in terms of the Devonshire theory for strongly anharmonic crystals. The E-T phase diagrams are constructed for all the crystals.  相似文献   

16.
The superconducting transition temperature T c of hafnium is measured as a function of pressure up to 64 GPa. The character of the pressure dependence of T c observed at α–ω–β transitions in Hf is found to be similar to that observed for Zr. In the regions of α and β phases, T c increases with pressure with the slopes dT c /dP=0.05 and 0.16 K/GPa, respectively. At the α–ω transition, T c (P) exhibits a tendency to a decrease, while at the ω–β transition, T c increases stepwise from 5.8 to 8.0 K. The α–ω transition occurs at pressures between 31.2 and 35.9 GPa, and the ω–β transition, at a pressure of 62±2 GPa.  相似文献   

17.
A new boron nitride polymorph is prepared for the first time by supercritical fluid synthesis in a high-pressure gazostat at a pressure P < 200 MPa and a temperature T < 1000°C in various atmospheres. The formation of the new phase is confirmed by x-ray diffraction and infrared absorption spectroscopy. A number of lines in the x-ray diffraction patterns and infrared absorption spectra of the new phase coincide with those described in the literature for the so-called E phase. On this basis, the conclusion is drawn that the E phase of boron nitride is most likely formed during supercritical fluid synthesis. Since the structure of the E phase is as yet unknown, a model structure of the new phase is proposed in the form of a diamond-like lattice with the sites occupied by molecules of the fulborene B12N12. The proposed structure is confirmed by the good agreement between the calculated and experimental values of the lattice parameters (A = 1.152 and 1.114 nm, respectively), densities (ρ = 2.59 and 2.50–2.60 g/cm3, respectively), and x-ray diffraction patterns. This new boron nitride zeolite with a faujasite lattice is given the name hyperdiamond fulborenite B12N12. The calculated bulk modulus of the hyperdiamond fulborenite B = 658 GPa is higher than that of diamond.  相似文献   

18.
The Nernst-Ettingshausen (NE) effect in the initial NaCl and high-pressure GeS phases was studied at a high pressure P for n-PdTe, p-PbSe, and p-PbS to estimate the mobility µ and the charge-carrier scattering parameter r. It was found that the transverse and longitudinal NE effects in PbTe and PbSe increase with pressure, indicating the transition to the gapless state near P≈3 GPa. The sign of the transverse NE effect changes because of the change in the electron scattering mechanism in the GeS phase. The experimentally observed weakening of the NE and magnetoresistance effects at high P gives evidence for the indirect energy gap Eg in the high pressure phases with GeS structure.  相似文献   

19.
The structure and properties of high-pressure phases of iron nitrides Fe7N3 in the pressure range of 50–150 GPa have been studied with ab initio calculations within the electron density functional theory. A new phase Amm2-Fe7N3, which is the most energetically favorable in the pressure range of 43–128 GPa, has been found using the USPEX (Universal Structure Predictor: Evolutionary Xtallography) algorithms. It has been thermodynamically shown that another high-pressure phase β-Fe7N3 is isostructural to a similar phase of iron carbide. The elastic properties have been calculated for all modifications ε-, β-, and Amm2-Fe7N3 stable at high pressures.  相似文献   

20.
Synchrotron X-ray diffraction studies of the structure of SnTe have been performed at room temperature and high pressures under the conditions of quasihydrostatic compression up to 193.5 GPa created in diamond anvil cells. Two structural phase transitions have been detected at P ≈ 3 and 23 GPa. The first phase transition is accompanied by a stepwise decrease in the volume of the unit cell by 4% because of the orthorhombic distortion of the initial SnTe-B1 cubic structure of the NaCl type. It has been found that two intermediate rhombic phases of SnTe with the space groups Cmcm and Pnma coexist in the pressure range of 3–23 GPa. The second phase transition at 23 GPa occurs from the intermediate rhombic modification to the SnTe-B2 cubic phase with the CsCl structure type. This phase transition is accompanied by an abrupt decrease in the volume of the unit cell by 8%. The pressure dependence of the volumes per formula unit at room temperature has been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号