首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The current voltage characteristics of the silicon ballistic MOSFETs are introduced and discussed. They are derived by considering the current capacity through the bottleneck point in the channel, and they provide a simple measure of the performance limit. The performance of experimental nanoscale bulk MOSFETs are compared with the ideal ballistic limit. It was shown that the performance degradation due to carrier scattering amounts to several to several tens percent in recent nanoscale MOSFETs. Quasi-ballistic transport in MOSFETs was also analyzed by a simple approach based on the transmission viewpoint. Channel-length reduction was found to yield consistent improvement of the ballisticity. Considerable performance degradation, however, was still found to persist even in 10-nm MOSFETs. The role of each carrier scattering mechanism is analyzed. It is shown that elastic scattering degrades the performance, but the inelastic energy relaxation improves the performance of the MOSFET.  相似文献   

2.
We investigate the hole transport in p-channel field-effect transistors doped with boron, at low temperatures (6-28 K). In transistors with a relatively large dimension, we observe the acceptor-mediated hopping and carrier freezeout, both of which are strongly influenced by the gate bias. In nanoscale transistors, these features turn into single-charge tunneling, i.e., the trapping/detrapping of single holes by/from individual acceptors. The statistics of the appearance of the modulation in a few ten samples indicates that the number of acceptors is small, or even just one, indicating that what we have observed is single-charge-transistor operation by a single-acceptor quantum dot.  相似文献   

3.
The electronic transport properties of fractal quantum waveguide networks in the presence of a magnetic field are studied. A Generalized Eigen-function Method (GEM) is used to calculate the transmission and reflection coefficients of the studied systems unto the fourth generation Sierpinski fractal network with node number N=123N=123. The relationship among the transmission coefficient T, magnetic flux Φ and wave vector k is investigated in detail. The numerical results are shown by the three-dimensional plots and contour maps. Some resonant-transmission features and the symmetry of the transmission coefficient T to flux Φ are observed and discussed, and compared with the results of the tight-binding model.  相似文献   

4.
We present novel resonant phenomena through parallel non-coupled double quantum dots (QDs) embedded in each arm of an Aharonov-Bohm (AB) ring with magnetic flux passing through its center. The electron transmission through this AB ring with each QD formed by two short-range potential barriers is calculated using a scattering matrix at each junction and a transfer matrix in each arm. We show that as the magnetic flux modulates, a distortion of the grid-like square transmission occurs and an anti-crossing of the resonances appears. Hence, the modulation of magnetic flux in this system can have an equivalent effect to the control of inter-dot coupling between the two QDs.  相似文献   

5.
We investigate the nonlinear thermal transport properties of a single interacting quantum dot with two energy levels tunnel-coupled to two electrodes using nonequilibrium Green function method and Hartree-Fock decoupling approximation. In the case of asymmetric tunnel-couplings to two electrodes, for example, when the upper level of the quantum dot is open for transport, whereas the lower level is blocked, our calculations predict a strong asymmetry for the heat (energy) current, which shows that the quantum dot system may act as a thermal rectifier in this specific situation.  相似文献   

6.
Nanophotonics, defined as nanoscale optical science and technology, is a new multidisciplinary frontier. This article presents our studies on nanoscale matter–radiation interactions utilizing nanoscale confinement of radiation as well as on nanoscale photochemical transformations, particularly nanoscale nonlinear optical interactions. The selected examples of our studies include nanoscopic optical harmonic generation, multiphoton fluorescence, transient absorption dynamics, surface-plasmon-enhanced two-photon fluorescence, and nonlinear optical information storage. Received: 12 December 2001 / Published online: 11 June 2002  相似文献   

7.
The transport property of electron in a quantum ring-stub system is investigated through quantum waveguide theory. The persistent current is produced and controlled by tuning the length of the stub even in the absence of the magnetic field, and it can be observed if one tuning the Fermi energy near the antiresonance or the Fano resonance of the transport current.  相似文献   

8.
Suzhi Wu  Yu-qiang Ma 《Physics letters. A》2008,372(13):2326-2331
Persistent current and transmission probability in the Aharonov-Bohm (AB) ring with an embedded quantum dot (QD) are studied using the technique of the scattering matrix. For the first time, we find that the persistent current can arise in the absence of magnetic flux in the ring with an embedded QD. The persistent current and the transmission probability are sensitive to the lead-ring coupling and the short-range potential barrier. It is shown that increasing the lead-ring coupling or the short-range potential barrier causes the suppression of the persistent current and the increasing resonance width of the transmission probability. The effect of the potential barrier on the number of the transmission peaks is also investigated. The dependence of the persistent current and the transmission probability on the magnetic flux exhibits a periodic property with period of the flux quantum.  相似文献   

9.
Considering phase interference, we investigate coherent transport in a quantum dot by using a thermopower. In the single process of the electronic transport through the quantum dot, it is shown that the phase interference between the levels of a quantum dot is like the Aharonov-Bohm effect. The result indicates that the thermopower is very sensitive to phase interference. It is also found that the phase-difference change of the different levels of the quantum dot can determine the shape of the thermopower.  相似文献   

10.
A method for simulating ballistic time-dependent device transport, which solves the time-dependent Sehrǒdinger equation using the finite difference time domain (FDTD) method together with Poisson's equation, is described in detail. The effective mass Schrǒdinger equation is solved. The continuous energy spectrum of the system is discretized using adaptive mesh, resulting in energy levels that sample the density-of-states. By calculating time evolution of wavefunctions at sampled energies, time-dependent transport characteristics such as current and charge density distributions are obtained. Simulation results in a nanowire and a coaxially gated carbon nanotube field-effect transistor (CNTFET) are presented. Transient effects, e.g., finite rising time, are investigated in these devices.  相似文献   

11.
Xu-Ming Zhang  Wei Lu 《Physics letters. A》2008,372(16):2816-2819
We study the thermopower of a multilevel quantum dot which is coupled with the two leads. From our theoretic results, the thermopower of a multilevel quantum dot shows an oscillatory dependence on the gate voltage, which has been found in a lot of experiment data. The Fano effect of the electronic transport through the multilevel quantum dot is also shown as an obvious asymmetric line shape of the thermopower which come from the interference between the resonant and nonresonant multilevel paths of the conductive electrons. In addition, at the higher temperature, to thermopower, not conductance, it is the multilevel that is much easier to do contribution to the Fano effect.  相似文献   

12.
Hui Pan  Su-Qing Duan 《Physics letters. A》2008,372(18):3292-3298
The effects of an ac electric field on the Fano resonance in a parallel-coupled double quantum dot system are investigated theoretically. The field can induce the photon-assisted Fano resonances for both symmetrical and asymmetrical parallel configurations. The magnitude and position of the photon-assisted Fano peak can be tuned by the ac field strength and frequency, respectively. Furthermore, the Fano resonance can appear with increasing the field frequency for both the symmetrical and asymmetrical configurations. This provides an efficient mechanism to control the Fano resonance. The photon-electron pumping effects for the symmetrical and asymmetrical cases are also studied in the weak- and strong-coupling regime.  相似文献   

13.
Recent years have seen a growing interest in using metal nanostructures to control temperature on the nanoscale. Under illumination at its plasmonic resonance, a metal nanoparticle features enhanced light absorption, turning it into an ideal nano‐source of heat, remotely controllable using light. Such a powerful and flexible photothermal scheme is the basis of thermo‐plasmonics. Here, the recent progress of this emerging and fast‐growing field is reviewed. First, the physics of heat generation in metal nanoparticles is described, under both continuous and pulsed illumination. The second part is dedicated to numerical and experimental methods that have been developed to further understand and engineer plasmonic‐assisted heating processes on the nanoscale. Finally, some of the most recent applications based on the heat generated by gold nanoparticles are surveyed, namely photothermal cancer therapy, nano‐surgery, drug delivery, photothermal imaging, protein tracking, photoacoustic imaging, nano‐chemistry and optofluidics.  相似文献   

14.
The motion of a few electrons in a three-dimensional harmonic oscillator potential under the influence of a homogeneous magnetic field of arbitrary direction is studied. The ground state of the Fermi system is obtained by minimizing the total energy with regard to the confining frequencies. From this a dependence of the equilibrium shape on the electron number, the magnetic field parameters and the slab thickness is found.  相似文献   

15.
We analyze the power output of a quantum dot machine coupled to two electronic reservoirs via thermoelectric contacts, and to two thermal reservoirs – one hot and one cold. This machine is a nanoscale analogue of a conventional thermocouple heat-engine, in which the active region being heated is unavoidably also exchanging heat with its cold environment. Heat exchange between the dot and the thermal reservoirs is treated as a capacitive coupling to electronic fluctuations in localized levels, modeled as two additional quantum dots. The resulting multiple-dot setup is described using a master equation approach. We observe an “exotic” power generation, which remains finite even when the heat absorbed from the thermal reservoirs is zero (in other words the heat coming from the hot reservoir all escapes into the cold environment). This effect can be understood in terms of a non-local effect in which the heat flow from heat source to the cold environment generates power via a mechanism which we refer to as Coulomb heat drag. It relies on the fact that there is no relaxation in the quantum dot system, so electrons within it have a non-thermal energy distribution. More poetically, one can say that we find a spatial separation of the first-law of thermodynamics (heat to work conversion) from the second-law of thermodynamics (generation of entropy). We present circumstances in which this non-thermal system can generate more power than any conventional macroscopic thermocouple (with local thermalization), even when the latter works with Carnot efficiency.  相似文献   

16.
Edged topological disorder in quantum mesoscopic cylinder threaded with magnetic flux is investigated by using exact diagonalization. The Fermi energy continuously varies with respect to magnetic flux against saw-tooth variation in ordered mesoscopic cylinder. In addition, the energy levels repel each other and energy gap appears in variation of energy spectra as a function of magnetic flux in edged topological disordered mesoscopic cylinder rather than ordered ones. In strong edged topological disorder, a narrow mesoscopic cylinder which is a low-dimensional sample behaves in the same way as a three-dimensional system.  相似文献   

17.
Using the Keldysh nonequilibrium Green function and equation-of-motion technique, we investigate Fano versus Kondo resonances in a closed Aharonov-Bohm interferometer coupled to ferromagnetic leads and study their effects on the conductance of this system. The conductance with both parallel and antiparallel lead-polarization alignments is analysed for various values of the magnetic flux. Our results show that this system can provide an excellent spin filtering property, and a large tunnelling magnetoresistance can arise by adjusting the system parameters, which indicates that this system is a possible candidate for spin valve transistors and has important applications in spintronics.  相似文献   

18.
We analyze the power output of a quantum dot machine coupled to two electronic reservoirs via thermoelectric contacts, and to two thermal reservoirs – one hot and one cold. This machine is a nanoscale analogue of a conventional thermocouple heat-engine, in which the active region being heated is unavoidably also exchanging heat with its cold environment. Heat exchange between the dot and the thermal reservoirs is treated as a capacitive coupling to electronic fluctuations in localized levels, modeled as two additional quantum dots. The resulting multiple-dot setup is described using a master equation approach. We observe an “exotic” power generation, which remains finite even when the heat absorbed from the thermal reservoirs is zero (in other words the heat coming from the hot reservoir all escapes into the cold environment). This effect can be understood in terms of a non-local effect in which the heat flow from heat source to the cold environment generates power via a mechanism which we refer to as Coulomb heat drag. It relies on the fact that there is no relaxation in the quantum dot system, so electrons within it have a non-thermal energy distribution. More poetically, one can say that we find a spatial separation of the first-law of thermodynamics (heat to work conversion) from the second-law of thermodynamics (generation of entropy). We present circumstances in which this non-thermal system can generate more power than any conventional macroscopic thermocouple (with local thermalization), even when the latter works with Carnot efficiency.  相似文献   

19.
We study the spin-polarized current through a vertical double quantum dot scheme. Both the Rashba spin–orbit (RSO) interaction inside one of the quantum dots and the strong intradot Coulomb interactions on the two dots are taken into account by using the second-quantized form of the Hamiltonian. Due to the existence of the RSO interaction, spin-up and spin-down electrons couple to the external leads with different strengths, and then a spin polarized current can be driven out of the middle lead by controlling a set of structure parameters and the external bias voltage. Moreover, by properly adjusting the dot levels and the external bias voltages, a pure spin current with no accompanying charge current can be generated in the weak coupling regime. We show that the difference between the intradot Coulomb interactions strongly influences the spin-polarized currents flowing through the middle lead and is undesirable in the generation of the net spin current. Based on the RSO interaction, the structure we propose can efficiently polarize the electron spin without the usage of any magnetic field or ferromagnetic material. This device can be used as a spin-battery and is realizable using the present available technologies.  相似文献   

20.
We investigate theoretically the ac conductivity of a dean two-channel spinless quantum wire in the presence of both short-ranged intra- and inter-channel electron-electron interactions. In the Luttinger-liquid regime, we formulize the action functional of the system with an external time-varying electric field. The obtained expression of ac conductivity for the system within linear response theory is generally an oscillation function of the interaction strength, the driving frequency as well as the measured position in the wire. The numerical examples demonstrate that the amplitude of ac conductivity is renormalized by the both interactions, and the dc conductivity of the system with inter-channel interaction is smaller than that without inter-channel interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号