首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several interacting models of chiral bosons and gauge fields are investigated on the noncommutative extended Minkowski spacetime which was recently proposed from a new point of view of disposing noncommutativity. The models include the bosonized chiral Schwinger model, the generalized chiral Schwinger model (GCSM) and its gauge invariant formulation. We establish the Lagrangian theories of the models, and then derive the Hamilton's equations in accordance with the Dirac's method and solve the equations of motion, and further analyze the self-duality of the Lagrangian theories in terms of the parent action approach.  相似文献   

2.
The magnetic backgrounds that physically give rise to spacetime noncommutativity are generally treated using noncommutative geometry. In this paper we prove that also the theory of generalised complex manifolds contains the necessary elements to generate B-fields geometrically. As an example, the Poisson brackets of the Landau model (electric charges on a plane subject to an external, particularly applied magnetic field) are rederived using the techniques of generalised complex manifolds.  相似文献   

3.
非对易相空间中角动量的分裂   总被引:10,自引:0,他引:10  
王剑华  李康 《中国物理 C》2006,30(11):1053-1057
非对易空间效应是一种在弦尺度下出现的物理效应. 本文首先介绍了在Schwinger表象中角动量的3个分量用产生--消灭算符的表示形式, 接着讨论了非对易相空间的量子力学代数; 然后用对易空间谐振子的产生-消灭算符表示出了在非对易情况下的角动量; 最后讨论了非对易相空间中角动量的分裂.  相似文献   

4.
In this paper we apply the assumption of our recent work in noncommutative scalar models to the noncommutative U(1) gauge theories. This assumption is that the noncommutative effects start to be visible continuously from a scale λNC and that below this scale the theory is a commutative one. Based on thisassumption and using background field method and loop calculations, an effective action is derived for noncommutative U(1) gauge theory. It will be shown that the corresponding low energy effective theory is asymptotically free and that under this condition the noncommutative quadratic IR divergences will not appear. The effective theory contains higher dimensional terms, which become more important at high energies. These terms predict an elastic photon-photon scattering due to the noncommutativity of space. Thecoefficients of these higher dimensional terms also satisfy a positivity constraint indicating that in this theory the related diseases of superluminal signal propagating and bad analytic properties of S-matrix do not exist. In the last section, we will apply our method to the noncommutative extra dimension theories.  相似文献   

5.
We compute the beta-functions of the standard model formulated on a noncommutative spacetime. If we assume that the scale for spacetime noncommutativity is of the order of 2.2×1015 GeV, we find that the three gauge couplings of the standard model merge at a scale of 2.3×1017 GeV. The proton lifetime is thus much longer than in conventional unification models.  相似文献   

6.
Noncommutative Maxwell–Chern–Simons theory in 3 dimensions is defined in terms of star product and noncommutative fields. The Seiberg–Witten map is employed to write it in terms of ordinary fields. A parent action is introduced and the dual action is derived. For spatial noncommutativity it is studied up to second order in the noncommutativity parameter θ. A new noncommutative Chern–Simons action is defined in terms of ordinary fields, inspired by the dual action. Moreover, a transformation between noncommuting and ordinary fields is proposed.  相似文献   

7.
The motion of a composite system made of N particles is examined in a space with a canonical noncommutative algebra of coordinates. It is found that the coordinates of the center-of-mass position satisfy noncommutative algebra with effective parameter. Therefore, the upper bound of the parameter of noncommutativity is re-examined. We conclude that the weak equivalence principle is violated in the case of a non-uniform gravitational field and propose the condition for the recovery of this principle in noncommutative space. Furthermore, the same condition is derived from the independence of kinetic energy on the composition.  相似文献   

8.
We have shown unambiguously the existence of solitons in the non-commutative (NC) extension of Chern-Simons-Higgs model. The analysis is done at the classical level (since solitons are essentially classical objects) and in the first non-trivial order in θ, the only spatial noncommutativity parameter. At the same time, we have exposed an inadequacy in the conventional definitions of the energy momentum tensor (EMT) in the present context but this pathology appears to be generic to NC field theories. This is reflected in the fact that the BPS soliton equations (obtained from the EMT) are not compatible with the full variational equations of motion, requiring further imposition a restriction on the form of the Higgs field, contrary to the commutative spacetime case. Both in the Lagrangian and Hamiltonian formulations of the problem, we concentrate on the canonical and symmetric forms of the energy-momentum tensor. In the Hamiltonian scheme, constraint analysis and the induced Dirac brackets are derived. In fact the EMT behaves properly as the spacetime translation generators and their actions on the fields are discussed in detail. The effects of noncommutativity on the soliton solutions have been analyzed carefully and we have come up with some interesting results. Comparing the relative strengths of the noncommutative effects, we have shown that there is a universal character in the noncommutative correction to the magnetic field—it depends only on θ. On the other hand, in the cases of all other observables of physical interest, such as the potential profile, soliton mass or the electric field, the parameters θ as well as τ (the latter comprising solely of commutative Chern-Simons-Higgs model parameters) appear with similar weightage.  相似文献   

9.
《Physics letters. A》2014,378(30-31):1973-1979
We present a relationship between noncommutativity and higher order time derivative theories using a perturbation method. We make a generalization of the Chern–Simons quantum mechanics for higher order time derivatives. This model presents noncommutativity in a natural way when we project to low-energy physical states without the necessity of taking the strong field limit. We quantize the theory using a Bopp's shift of the noncommutative variables and we obtain a spectrum without negative energies, under the perturbation limits. In addition, we extent the model to high order time derivatives and noncommutativity with variable dependent parameter.  相似文献   

10.
We show that relativistic heavy ion collisions at LHC energies could be used as an experimental probe to detect fundamental properties of spacetime long speculated about. Our results rely on the recent proposal that magnetic fields of intensity much larger than that of magnetars should be produced at the beginning of the collisions and this could have an important impact on the experimental manifestation of a noncommutative spacetime. Indeed, in the noncommutative generalization of electrodynamics the interplay between a nonzero noncommutative parameter and an external magnetic field leads us to predict the production of lepton pairs of low invariant mass by free photons (an event forbidden by Lorentz invariant electrodynamics) in relativistic heavy ion collisions at present and future available energies. This unique channel can be clearly considered as a signature of noncommutativity. On the other hand, the search for such decays is worth anyway because their absence would ameliorate of three orders of magnitude the current bound on the noncommutative parameter.  相似文献   

11.
We elaborate on the dynamics of noncommutative two-dimensional gauge field theories. We consider U(N) gauge theories with fermions in either the fundamental or the adjoint representation. Noncommutativity leads to a rather non-trivial dependence on theta (the noncommutativity parameter) and to a rich dynamics. In particular the mass spectrum of the noncommutative U(1) theory with adjoint matter is similar to that of ordinary (commutative) two-dimensional large-NSU(N) gauge theory with adjoint matter. The noncommutative version of the ?t Hooft model receives a non-trivial contribution to the vacuum polarization starting from three-loops order. As a result the mass spectrum of the noncommutative theory is expected to be different from that of the commutative theory.  相似文献   

12.
In this paper, we apply the tunneling of massive particle through the quantum horizon of a Schwarzschild black hole in noncommutative spacetime. The tunneling effects lead to modified Hawking radiation due to inclusion of back-reaction effects. Our calculations show also that noncommutativity effects cause the further modifications to the hermodynamical relations in black hole. We calculate the emission rate of the massive particles' tunneling from aSchwarzschild black hole which is modified on account of noncommutativity influences. The issues of information loss and possible correlations between emitted particles are discussed. Unfortunately even by considering noncommutativity view point, there is no correlation between different modes of evaporation at least at late-time. Nevertheless, as a result of spacetime noncommutativity, information may be conserved by a stable black hole remnant.  相似文献   

13.
14.
15.
Rotationally invariant space with noncommutativity of coordinates and noncommutativity of momenta of canonical type is considered. A system of N interacting harmonic oscillators in uniform field and a system of N particles with harmonic oscillator interaction are studied. We analyze effect of noncommutativity on the energy levels of these systems. It is found that influence of coordinates noncommutativity on the energy levels of the systems increases with increasing of the number of particles. The spectrum of N free particles in uniform field in rotationally invariant noncommutative phase space is also analyzed. It is shown that the spectrum corresponds to the spectrum of a system of N harmonic oscillators with frequency determined by the parameter of momentum noncommutativity.  相似文献   

16.
A semiclassical constrained Hamiltonian system which was established to study dynamical systems of matrix valued non-Abelian gauge fields is employed to formulate spin Hall effect in noncommuting coordinates at the first order in the constant noncommutativity parameter θ. The method is first illustrated by studying the Hall effect on the noncommutative plane in a gauge independent fashion. Then, the Drude model type and the Hall effect type formulations of spin Hall effect are considered in noncommuting coordinates and θ deformed spin Hall conductivities which they provide are acquired. It is shown that by adjusting θ different formulations of spin Hall conductivity are accomplished. Hence, the noncommutative theory can be envisaged as an effective theory which unifies different approaches to similar physical phenomena.  相似文献   

17.
A pedagogical introduction to some of the main ideas and results of field theories on quantized spacetimes is presented, with emphasis on what such field theories may teach us about the problem of quantizing gravity. We examine to what extent noncommutative gauge theories may be regarded as gauge theories of gravity. UV/IR mixing is explained in detail and we describe its relations to renormalization, to gravitational dynamics, and to deformed dispersion relations in models of quantum spacetime of interest in string theory and in doubly special relativity. We also discuss some potential experimental probes of spacetime noncommutativity.  相似文献   

18.
《Physics letters. [Part B]》2001,504(4):329-337
We derive the worldsheet propagator for an open string with different magnetic fields at the two ends, and use it to compute two distinct noncommutativity parameters, one at each end of the string. The usual scaling limit that leads to noncommutative Yang–Mills can be generalized to a scaling limit in which both noncommutativity parameters enter. This corresponds to expanding a theory with U(N) Chan–Paton factors around a background U(1)N gauge field with different magnetic fields in each U(1).  相似文献   

19.
We unify κ-Poincaré algebra and κ-Minkowski spacetime by embedding them into quantum phase space. The quantum phase space has Hopf algebroid structure to which we apply the twist in order to get κ-deformed Hopf algebroid structure and κ-deformed Heisenberg algebra. We explicitly construct κ-Poincaré–Hopf algebra and κ-Minkowski spacetime from twist. It is outlined how this construction can be extended to κ-deformed super-algebra including exterior derivative and forms. Our results are relevant for constructing physical theories on noncommutative spacetime by twisting Hopf algebroid phase space structure.  相似文献   

20.
《Physics letters. A》2010,374(37):3810-3817
A recent method of constructing quantum mechanics in noncommutative coordinates, alternative to implying noncommutativity by means of star product is discussed. Within this approach we study Hall effect as well as quantum phases in noncommutative coordinates. The θ-deformed phases which we obtain are velocity independent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号