首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Specific features of the charge-transfer states and transitions of the O 2p → Co 3d type in octahedral complexes (CoO6)9? and (CoO6)10? are considered in the cluster approach. The reduced matrix elements of the electric dipole transition operator are calculated on the many-electron wave functions of the complexes corresponding to the initial (high-or low-spin) state and the final state at a charge-transfer transition. The energies of the many-electron charge-transfer transitions and their intensities are calculated within the Tanabe-Sugano theory taking into account the mixing of different configurations of the same symmetry. Simulation of the optical spectrum of cobaltites showed the presence of a wide band consisting of many lines due to the charge-transfer transitions. The results of the simulation are in agreement with experiment and demonstrate the limited validity of the generally accepted concepts of a simple structure of the spectrum of charge-transfer transitions.  相似文献   

2.
Specific features of charge-transfer states and charge-transfer transitions of the O2p → Cr3d type in octahedral complexes (CrO6)9? have been considered in the cluster approximation. Reduced matrix elements of the electric-dipole moment operator on many-electron wave functions, which are the initial and final states for charge-transfer transitions, are calculated. The results are parameterized, and the relative intensities of different allowed charge-transfer transitions in the absence of mixing of different charge-transfer configurations with identical symmetry are calculated. This mixing is taken into account within the Tanabe-Sugano theory, and the true energies and intensities of many-electron charge-transfer transitions are obtained. The Coulomb interaction between 2p electrons of O2? ligands and 3d electrons of the central Cr3+ ion in (CrO6)9? cluster is considered. The influence of this interaction on the optical spectra is found to be insignificant. Simulation of the optical spectra of chromium oxides has shown the presence of a band of complex charge-transfer transitions composed of 33 lines with a total width of about 8 eV. The model spectrum is in adequate agreement with the experimental data, which indicates limited applicability of the widespread view that charge-transfer transition spectra have a simple structure.  相似文献   

3.
4.
The reflection and luminescence excitation spectra of CaF2 crystals containing europium ions in divalent (Eu2+) and trivalent (Eu3+) states were measured in the range from 4 to 16 eV. It was established that, in CaF2 : Eu3+ crystals, luminescence of Eu3+ ions (the f-f transitions) is effectively excited both in the charge-transfer band (at ~8 eV) and in the region of the 4f–5d transitions (at ~10 eV) but is virtually not excited in the fundamental region of the crystal (at an energy higher than 10.5 eV). Luminescence of Eu2+ ions (the 427-nm band) in CaF2 : Eu3+ is effectively excited in the fundamental region of the crystal; i.e., luminescence of divalent europium ions occurs through the trapping mechanism. Emission of Eu2+ ions in CaF2 : Eu2+ crystals is characterized by the excitation band at an energy of 5.6 eV (the 4f → 5d,t 2g transitions), as well as by the exciton and interband luminescence excitations. The results obtained and data available in the literature are used to construct the energy level diagram with the basic electron transitions in the CaF2 : Eu crystals.  相似文献   

5.
A study has been made of the spectral dependence of the Cotton-Mouton effect (CME) quadratic in magnetic field, nonreciprocal birefringence (NB) linear in magnetic field, and the Faraday effect (FE) in the cubic magnetic semiconductor γ-Dy2S3. Unlike the FE, the CME and the NB in this crystal are anisotropic, with the pattern of the anisotropy being dependent on the photon energy. The dependence of the CME and NB dispersion on the direction of the magnetic field B indicates contribution from a variety of electronic transitions and mechanisms to these phenomena. It is shown that the resonant contributions to the CME and NB in the transparency region originate from electronic transitions near E?3.4 eV (beyond the band edge E g=2.8 eV), which are likely transitions from the localized ground state of the Dy3+ ion to states derived from mixing of the band and 4f N?1 5d states of the dysprosium ion. The character of the CME anisotropy in the transparency region and near the local electronic transition 6 H 15/26 F 3/2 connecting states of the unfilled 4f shell of the Dy3+ ion suggests the presence of a strong axial component of the crystal field acting on the rare earth ion.  相似文献   

6.
The optical absorption spectra of single-crystal ferroborate GdFe3(BO3)4 and GdFe2.1Ga0.9(BO3)4 are measured and interpreted. It is found that the absorption edge and the absorption bands A, B, and C observed below the edge are close to those for FeBO3. A many-electron model of the band structure of GdFe3(BO3)4 is suggested including strong electron correlations between the iron d states. It is shown that GdFe3(BO3)4 has a charge-transfer dielectric gap. A rise in pressure is predicted to result in a crossover between the high-spin and low-spin states of the Fe3+ ion, collapse of the magnetic moment, a weakening of Coulomb correlations, an abrupt reduction in the energy gap, and an insulator-semiconductor transition.  相似文献   

7.
The Auger spectra of theM 2,M 3,M 4,M 5 subshells of krypton and the Coster-Kronig spectra of theM 1,M 2,M 3 subshells of krypton were measured with an electrostatical spectrometer. The ionization in theM shells was caused by electron impact. The use of a gaseous target made it possible to measure the Auger lines even at energies as low as 25 eV. The absolute energies and relative intensities of a great number of transitions were determined: 22 of theM 4, 5 spectrum, 14 of theM 2, 3 spectrum and 2 of theM 1 spectrum. Only in the case of theM 2, 3 spectrum a comparison between the relative intensities, determined experimentally, and those calculated byRubenstein forZ=47 was possible. The agreement is only qualitatively. Moreover, from the Auger electron energies measured, the following binding energies were calculated:E(M 1)=(292,1±1,0) eV,E(M 2)=(222,1±0,6) eV,E(M 3)=(214,6±0,6)eV,E(N 1 N 1)=(62,81±0,05) eV.  相似文献   

8.
The density of states of the valence band of a p-GaAs layer formed on an n-GaAs surface owing to the bombardment by 2500-eV Ar+ ions has been studied by photoelectron spectroscopy. A number of peaks have been detected in the spectrum of the edge of the valence band in the binding energy range EV < 1.2eV. Their number and energy positions correspond to the quantum confinement levels calculated for a hole quantum well on the surface with the width about the ion penetration depth Rp = 3.6nm. Electronic transitions from these levels to the bottom of the conduction band have been revealed in the spectrum of characteristic energy losses of electrons reflected from the surface. Thus, it has been shown that the action of the argon ion beam on n-GaAs results in the formation of a quantum well on the surface.  相似文献   

9.
A study of the spectrum of nonlinear two-photon and two-step absorption in NiO single crystals, carried out in the energy region ?ω1 + ?ω2 = 2.45–4.575 eV, showed it to have a complex shape and consist of very strong peaks (from 0.05 to 2.7 cm/MW). Within the energy interval 2.45–3.3 eV, the spectrum is due to d-d transitions in the Ni2+ ion. The band gap width was determined to be E g =3.466 eV. The spectral features seen above this energy originate from interband transitions from three valence subbands to the conduction band bottom.  相似文献   

10.
The optical spectra and the second-harmonic generation (SHG) are studied in a noncentrosymmetric GdFe3(BO3)4 magnet. In the region of weak absorption (α~20–400 cm?1) below ~3 eV, three absorption bands are distinguished, which can be unambiguously assigned to forbidden electronic transitions from the ground 6A1 state of the Fe3+ ion to its excited states 4T1(~1.4 eV), 4T2(~2 eV), and 4A1, 4E(~2.8 eV). Intense absorption begins in the region above 3 eV (α~2–4×105 cm?1), where two bands at ~4.0 and 4.8 eV are observed, which are caused by allowed electric dipole charge-transfer transitions. The spectral features of SHG in the 1.2–3.0-eV region are explained by a change in the SHG efficiency caused by a change in the phase mismatch. It is shown that in the weak absorption region, phase matching can be achieved for SHG.  相似文献   

11.
Al2O3 films 150 Å thick are deposited on silicon by the ALD technique, and their x-ray (XPS) and ultraviolet (UPS) photoelectron spectra of the valence band are investigated. The electronic band structure of corundum (α-Al2O3) is calculated by the ab initio density functional method and compared with experimental results. The α-Al2O3 valence band consists of two subbands separated with an ionic gap. The lower band is mainly formed by oxygen 2s states. The upper band is formed by oxygen 2p states with a contribution of aluminum 3s and 3p states. A strong anisotropy of the effective mass is observed for holes: m h * ≈ 6.3m 0 and m h * ≈ 0.36m 0. The effective electron mass is independent of the direction m e * m e * ≈ 0.4m 0.  相似文献   

12.
The reflection R(?ω), transmission t(?ω), absorption α(?ω), and refraction n(?ω) spectra of polycrystalline In2O3–SrO samples with low optical transparency, which contain In2O3 and In2SrO4 crystallites with In4SrO6 + δ interlayers, are examined. In the region of small ?ω values, the reflection coefficient decreases as the resistance of samples saturated with oxygen increases. Spectral dependences n(?ω) and α(?ω) are calculated using the classical electrodynamics relations. The results are compared to the data based on the t(?ω) spectra. The calculated absorption spectra are interpreted within the model with an overlap of tails of the density of states in the valence band and in the conduction band. A “negative” gap E gn in the density of states with a width from–0.12 to–0.47 eV is formed in highly disordered samples in this model. It is demonstrated that the high density of defects and the band of deep acceptor states of strontium in the major matrix In2O3 phase are crucial to tailing of the absorption edge and its shift toward lower energies. The direct gap E gd = 1.3 eV corresponding to the In2SrO4 phase is determined. The energy band diagram and the contribution of tunneling, which reduces the threshold energy for interband optical transitions, are discussed.  相似文献   

13.
The mechanism of broken mirror symmetry may be the reason behind the appearance of the observed weak-mixing matrix for leptons that has a structure involving virtually no visible regularities (flavor riddle). Special features of the Standard Model such as the particle-mass hierarchy and the neutrino spectrum deviating from the hierarchy prove here to be necessary conditions for reproducing a structure of this type. The inverse character of the neutrino spectrum and a small value of the mass m 3 are also mandatory. The smallness of the angle θ 13 is due precisely to the smallness of the mass ratios in the hierarchical lepton spectrum. The emergence of distinctions between the neutrino spectrum and the spectra of other Standard Model fermions is explained. The inverse character of the neutrino spectrum and the observed value of θ 13 make it possible to estimate the absolute values of their masses as m 1m 2 ≈ 0.05 eV and m 3 ≈ 0.01 eV.  相似文献   

14.
We study the room-temperature (RT) pulsed cathodoluminescence (PCL) spectrum of a high-purity synthetic α-quartz single crystal. The spectrum consists of two wide bands with intensity maxima at 415 and 490 nm (2.99 and 2.53 eV). The band at 490 nm (2.5 eV) is polarized in the XY crystal plane (perpendicular to the third-order symmetry axis) and possesses a structure with three peaks at 480±2, 487±2, and 493±2 nm (2.58±0.01, 2.55±0.01, and 2.52±0.01 eV). The intensities of the peaks at 480±2 and 493±2 nm increased with increase in the irradiation dose up to 45 kGy. Peaks are equidistant at the energetic scale. The energy separation between the peaks Δ = 0.03 ± 0.01 eV is equal in order of magnitude to energies of Li x O y molecular vibrations and to the energy of the optical phonon in α-quartz. We propose an explanation of the experimental data obtained. According to this explanation, the structure observed may be attributed to the amplitude modulation of the quartz 2.5 eV emission band by the crystalline electric fields on frequencies of optical phonons. The nonequilibrium phonons may arise during the electron-beam irradiation.  相似文献   

15.
Gadolinium gallium garnet single-crystal films containing terbium are grown through liquid-phase epitaxy from a supercooled solution melt in the PbO-B2O3 system. The optical absorption spectra in the wavelength range 0.2–10.0 μm and the luminescence spectra excited by synchrotron radiation with energies in the range 3.5–30.0 eV are investigated at temperatures of 10 and 300 K. It is revealed that the optical absorption spectra contain an absorption band with the maximum at a wavelength λ ≈0.260 μm, which corresponds to the spin-allowed electric dipole transition between the electronic configurations 4f 8(7 F 6) → 4f 7(8 S)5d of the Tb3+ ions. The narrow low-intensity absorption bands attributed to the 4f → 4f transitions from the 7 F 6 ground level to the 7 F 0–5 multiplet levels of the Tb3+ ions are observed in the wavelength range 1.7–10.0 μm. In the luminescence spectra measured at a temperature of 10 K, the highest intensity is observed for a band with the maximum at a wavelength λ ≈ 0.544 μm, which is associated with the 5 D 47 F 5 radiative transition in the Tb3+ ion.  相似文献   

16.
We report photoemission results from which we directly determined the density of states g(E) in the gap of a-Si:H between the top of the valence band Ev and the Fermi level. At 0.4 eV above Ev, g(E) was found to be ≈1×1020 cm-3 eV-1 in the undoped film; P-doping increased g(E) in this region whereas annealing reduced it. The photoconductivity-derived optical absorption spectrum matched the shape of the photoemission spectrum, and thus supports the explanation that the photoconductivity shoulder at photon energies in the region of 1.3 eV is due to transitions from localized states above the valence band to the conduction band.  相似文献   

17.
18.
A many-electron model is proposed for the band structure of FeBO3 with regard to strong electron correlations in the d4, d5, and d6 configurations. Under normal conditions, FeBO3 is characterized by a dielectric charge-transfer gap in the strong correlation regime U?W. With increasing pressure, not only does the d-band W width grow but simultaneously the effective Hubbard parameter Ueff sharply drops, which is due to the crossover of high-spin and low-spin ground state terms of the Fe2+, Fe3+, and Fe4+ ions. It is predicted that a transition from the semiconducting antiferromagnetic state to the metallic paramagnetic state will occur in the high-pressure phase with increasing temperature.  相似文献   

19.
Full-electron calculations of the electronic structure of the TiSi2 compound in the structural modification C49 are performed using the augmented-plane-wave method. The total energy, the electronic band structure, and the density of states are calculated for an extended translational unit cell Ti4Si8, which is formed during the growth of a silicon nanowire on a p-Si substrate. Calculations are also carried out for two orthorhombic unit cells of the nonstoichiometric compositions Ti3Si9 and Ti5Si7. The energies of the interatomic bonds are determined to be E Si-Si = 1.8 eV, E Ti-Ti = 2.29 eV, and E Ti-Si = 4.47 eV. The dependence of the total energy of the unit cell E tot(V) on the unit cell volume V is obtained by optimizing the unit cell volume. The bulk modulus B 0 = 132 GPa is determined from the Murnaghan equation of state for solids and the dependence E tot (V). This value of the bulk modulus is used to estimate the activation energy for interstitial diffusion of silicon atoms Q i(Si) ≈ 0.8 eV.  相似文献   

20.
The distribution of energy fluxes of the hadron component of extensive air showers through an ion-ization calorimeter in the primary-energy range ~3 × 1013?1016 eV is considered. Extensive air showers with zero and minimum energy fluxes of the hadron component are selected. It is concluded that the primary-energy range E 0 ≈ 1 × 1014?2 × 1015 eV contains isotropic γ radiation with a spectrum close to bell-shaped, having a maximum near E 0 ≈ 2.2 × 1014 eV and an additional peak near E 0 ≈ 1.6 × 1015 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号