首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The reflectivity spectra and the magnetorefractive effect (MRE) of (Co50Fe50)x(Al2O3)1?x metal-dielectric granular films (0.07<x<0.52) are analyzed in the IR spectral range λ=2.5–25 µm. It is revealed that the specific features observed in the spectra at λ≈8.5 and 20 µm are associated with the excitation of phonon modes in the dielectric matrix. The magnetorefractive effect in the films is observed below the percolation thresh-old only in p-polarized light and above the percolation threshold for both the p and s polarizations. It is demonstrated that the optical properties of (Co50Fe50)x(Al2O3)1?x films in the IR spectral range, to a first approximation, can be interpreted in the framework of the effective-medium theory and the magnetorefractive effect can be explained in terms of the modified Hagen-Rubens relation.  相似文献   

2.
We present results on the magneto-optic properties of ferromagnetic films deposited on GaAs and SiO2 substrates. Using left- and right-circularly polarized light, we have measured the polarization-dependent photoresponse and reflectivity of Co/GaAs, Fe/GaAs and NiFe/GaAs Schottky diodes and the polarization-dependent reflection and transmission of NiFe/SiO2 and Co/SiO2 structures as a function of ferromagnetic film thickness, reported here in the range of 7.5-15 nm. Films were prepared by sputtering and molecular-beam epitaxy. Measurements were made in the presence of magnetic fields ranging from −1.2 to +1.2 T both parallel and perpendicular to the sample surface. We find maximum polarization-dependent transmission and photoresponse effects (with respect to left- versus right-circularly polarized light) of 2-4% in magnitude. Taken together the work suggests that magneto-optic effects intrinsic to the films, rather than spin injection across the ferromagnetic/semiconductor interface, are responsible for the observed phenomenology. The work has direct implications for the interpretation of results in ferromagnetic/semiconductor spintronic systems.  相似文献   

3.
The peculiarities of absorption of rf electromagnetic radiation (ferromagnetic resonance) in multilayer NiFe/Ni0.65Cu0.35(d)/CoFe structures in a wide temperature range are analyzed. It is shown that the type of interaction of the NiFe and CoFe ferromagnetic films via a “weak” ferromagnetic Ni0.65Cu0.35 interlayer changes from antiferromagnetic to ferromagnetic upon cooling and a decrease in interlayer thickness d. The detected temperature dependence of the interlayer interaction indicates the possibility of observation of a strong magnetocaloric effect in the structures under investigation.  相似文献   

4.
We investigated the field dependences of the magnetization and magnetoresistance of superlattices [Co(t x, Å)/Cu(9.6 Å)]30 prepared by magnetron sputtering, differing in the thickness of cobalt layers (0.3 Å ≤ t Co ≤ 15 Å). The optical and magnetooptical properties of these objects were studied by ellipsometry in the spectral region of hω= 0.09–6.2 eV and with the help of the transverse Kerr effect (hω= 0.5–6.2 eV). In the curves of an off-diagonal component of the tensor of the optical conductivity of superlattices with t Co = 3–15 Å, a structure of oscillatory type (“loop”) was detected in the ultraviolet region, resulting from the exchange splitting of the 3d band in the energy spectrum of the face-centered cubic structure of cobalt (fcc Co). Based on magnetic experiments and measurements of the transverse Kerr effect, we found the presence of a superparamagnetic phase in Co/Cu superlattices with a thickness of the cobalt layers of 3 and 2 Å. The transition from superlattices with solid ferromagnetic layers to superparamagnetic cluster-layered nanostructures and further to the structures based on Co and Cu (t Co = 0.3–1 Å) with a Kondo-like characteristics of the electrical resistivity at low temperatures is analyzed.  相似文献   

5.
The magnetorefractive effect (MRE) in manganites has been studied within the effective medium theory. The MRE has been calculated in manganites La1–xKxMnO3 (x = 0.1 and 0.15) for light transmission and reflection. Good agreement with experimental results demonstrates direct relation of the MRE to the magnetoresistance and optical properties of manganites with various substitution levels. It has been shown that the MRE can exceed 10% in the near- and mid-IR region near the magnetic phase transition and can change sign during light transmission and reflection in the region of phonon modes. The results make it possible to recommend the MRE as a contactless method for studying magnetoresistive materials and for developing sensors and microelectronic elements.  相似文献   

6.
《Current Applied Physics》2010,10(2):655-658
We have quantitatively investigated the Hall effect in [Co, CoFe/Pt] multilayer films. The [Co, CoFe/Pt] multilayers exhibit large spontaneous Hall resistivity (ρH) and Hall angle (ρH/ρ). Even though the Hall resistivity in [Co, CoFe/Pt] multilayer films (2.7–4 × 10−7 Ω cm) is smaller than that of amorphous RE–TM alloy films which show large spontaneous Hall resistivity (<2 × 10−6 Ω cm), the Hall angle of multilayer (6–8%) is almost twice than that in amorphous rare earth–transition metal alloy films (∼3%). The Hall angle provides evidence of the effects of the exchange interaction of the Hall scattering. The exchange is between conduction electron spins and the localized spins of the transition metal. The large Hall angle of [Co, CoFe/Pt] multilayer can be considered due to the high spin polarization and high Curie temperature of Co and CoFe transition metal layers. Even though the role of interfaces and surfaces in the magnetic properties of multilayer films may dominate that of the bulk, the Hall effects in [Co, CoFe/Pt] multilayer may be mainly dominated by the bulk effect.  相似文献   

7.
Based on the results from comparison of the data on lattice reflection for Zn1 ?x Cd x Se bulk crystals (x = 0.08, 0.22) and Zn1 ?x Cd x Se thin layers of the same compositions grown on GaAs, a more adequate interpretation is given to the lattice IR reflection spectra of Zn1 ?x Cd x Se alloy films (x = 0–0.55) grown on a GaAs substrate by molecular-beam epitaxy. In this composition region, two ZnSe-and CdSe-like lattice modes are observed corresponding to a double-mode type of rearrangement of the vibration spectrum with varying x. A weak (with oscillator strength smaller than 0.25) high-frequency mode (with respect to the dominant modes) at 220 cm?1 is also observed.  相似文献   

8.
The electrical resistance of granular structures with ferromagnetic and nonferromagnetic metal nanoparticles embedded in concentrations below the percolation threshold was studied in strong electric fields. More specifically, amorphous silicon dioxide containing nanoparticles of a Co41Fe39B20 alloy [(a-SiO2)100? x(Co41Fe39B20)x structure] and amorphous hydrogenated carbon with embedded copper nanoparticles, a-C: H(Cu), were investigated. The (a-SiO2)100?x(Co41Fe39B20)x structures revealed changes in the electrical resistance and magnetoresistance after being subjected to a strong electric field. The changes could have reversible or irreversible character and depended on the electrical prehistory of the sample. A strong electric field caused not only a decrease in the electrical resistance but also a decrease in the magnetoresistance, although the magnetization of the sample remained unchanged. The temperature dependences of the current in a-C: H(Cu) films exhibited conductivity peaks under a decrease in temperature in strong electric fields and transitions from the insulating to conducting state; after the field was removed, there occurred reverse transitions and conductivity relaxation, as well as pronounced changes in the dielectric permittivity and an increase in dielectric losses with increasing temperature. A model of cluster electronic states (CESs) is proposed to account for the experimental findings. These states are created by electrons of the metal grains and matrix defects near the Fermi surface. The observed features find explanation in a change in the CES structure. A strong electric field does not bring about d-electron delocalization, and the fraction of d electron wave functions in a CES is small.  相似文献   

9.
In order to optimize a 1.3 μm integrated optical isolator using a CoFe alloy for the non-reciprocal magneto-optical (MO) transverse Kerr effect, we have measured the optical and magneto-optical indices of Co90Fe10 and Co50Fe50 alloys grown in the Al2O3/Al/CoFe/GaAs multilayer structure. The optical reflectivity and MO rotation and ellipticity measurements were performed at variable incidence angle and s and p polarization of the incident light. In order to determine the optical and MO indices, the experimental data were fitted using a Matlab implementation of a standard multilayer Yeh formalism including multiple reflections. This original procedure allows precise determination of the optical and MO indices of CoFe alloys.  相似文献   

10.
The effect of atomic disorder on the electron transport and the magnetoresistance (MR) of Co2CrAl Heusler alloy (HA) films has been investigated. We show that Co2CrAl films with L21 order exhibit a negative value for the temperature coefficient of resistivity (TCR) in a temperature range of 10 < T < 290 K, and the temperature dependence of electric conductivity varies as T 3/2 similarly to that of the zero-gap semiconductors. The atomic or the site disorder on the way of L21 → B2 → A2 → amorphous state in Co2CrAl HA films causes the deviation from this dependence: reduction in the absolute value of TCR as well as decrease in the resistivity down to ?(T = 293 K) ~ 200 μΩ cm in comparison to ?(T = 293 K) ~ 230 μΩ cm typical for the Co2CrAl films with L21 order. The magnetic-field dependence of MR of the Co2CrAl films with L21 order is determined by two competing contributions: a positive Lorentz scattering and a negative s-d scattering. The atomic disorder in Co2CrAl films drastically changes MR behavior due to its strong influence on the magnetic properties.  相似文献   

11.
The magnetic properties of multilayer Gd/Si/Co magnetic films are experimentally studied by electron magnetic resonance and analyzed theoretically. The introduction of a semiconductor silicon interlayer is found to substantially affect the magnetic interlayer coupling and the magnetic dynamics of the system. The interlayer coupling is shown to be ferromagnetic for the (Gd/Si)n films and to be antiferromagnetic for the (Gd/Si/Co/Si)n films. The temperature dependences of the exchange parameters and the gyromagnetic ratios are determined. Possible mechanisms responsible for the formation of the interlayer coupling are discussed.  相似文献   

12.
Spectral ellipsometry was used to study surface layers of Fe80 A 5B15 (A = Ti, V, Cr, Mn, Fe, Co, Ni) and Fe78-x NixSi9B13 (x = 0, 1, 4, 8, 16, 21 at. %) amorphous metal alloys obtained by melt spinning. The optical characteristics of the alloys were determined by solving the inverse problem of ellipsometry. A correlation between the optical properties of the surface layers of amorphous alloys and their thermal stability was found.  相似文献   

13.
The field and concentration dependences of the ferromagnetic resonance spectra and static magnetic parameters of granular Cox(LiNbO3)100 ? x nanocomposites (26 ≤ x ≤ 81 at %) with a matrix of amorphous ferroelectric LiNbO3 have been investigated. It is shown that oxidative processes affect the magnetic parameters of this material.  相似文献   

14.
15.
The electronic structure of polycrystalline ferromagnetic Zn1−xCoxO (0.05≤x≤0.15) and the oxidation state of Co in it, have been investigated. The Co-doped polycrystalline samples are synthesized by a combustion method and are ferromagnetic at room temperature. XPS and optical absorption studies show evidence for Co2+ ions in the tetrahedral symmetry, indicating substitution of Co2+ in the ZnO lattice. However, powder XRD and electron diffraction data show the presence of Co metal in the samples. This give evidence to the fact that some Co2+ ion are incorporated in the ZnO lattice which gives changes in the electronic structure whereas ferromagnetism comes from the Co metal impurities present in the samples.  相似文献   

16.
Ferromagnetic resonance spectra (FMR) on heterostructures of amorphous silicon dioxide films containing cobalt nanoparticles, (SiO2)100−xCox, grown on GaAs and Si substrates have been investigated over a frequency range of 37–41 GHz at room temperature. The FMR linewidth and saturation magnetization dependencies on the cobalt concentration have been analyzed. The impact of the semiconductor type on the FMR linewidth ΔH and a sharp increase in ΔH with a decreasing concentration of cobalt nanoparticles have been noted. The effect of considerable FMR linewidth broadening has been accounted for by the spin-polarized relaxation mechanism.  相似文献   

17.
The electric, magnetic resonance, and magneto-optical properties of thin laser-plasma deposited 50–100-nm layers of diluted magnetic semiconductors Ge:(Mn, Al)/GaAs, Ge:(Mn, Al)/Si, and Heusler alloys Co2MnSi/Si, Co2MnSi/GaAs, and Fe2CrSi/GaAs with T c > 293 K were studied. Anomalous ferromagnetic resonance in Ge:(Mn, Al) layers, ferromagnetism in CoSi/Si characterized by strong hysteresis in the magneto-optic Kerr effect, and the anomalous Hall effect at 293 K were observed.  相似文献   

18.
利用X射线吸收精细结构、X射线衍射和磁性测量等技术研究脉冲激光气相沉积法制备的Zn1-xCoxO (x=0.01,0.02)稀磁半导体薄膜的结构和磁性.磁性测量结果表明Zn1-xCoxO样品都具有室温铁磁性.X射线衍射结果显示其薄膜样品具有结晶良好的纤锌矿结构.荧光X射线吸收精细结构测试结果表明,脉冲激光气相沉积法制备的样品中的Co离子全部进入ZnO晶格中替代了部分Zn的格点位置,生成单一相的Zn1-xCoxO 稀磁半导体.通过对X射线吸收近边结构谱的分析,确定Zn1-xCoxO薄膜中存在O空位,表明Co离子与O空位的相互作用是诱导Zn1-xCoxO产生室温铁磁性的主要原因. 关键词: 1-xCoxO稀磁半导体')" href="#">Zn1-xCoxO稀磁半导体 X射线吸收精细结构谱 脉冲激光气相沉积法  相似文献   

19.
The superconductor/ferromagnet proximity effect in the Pb/Co2Cr1–xFe x Al bilayer systems has been studied. Thin films of the Heusler alloy Co2Cr1–xFe x Al have been prepared at different substrate temperatures. It has been established using Andreev spectroscopy of point contacts that the degree of spin polarization of conduction electrons in the Heusler alloy is on the order of 30 and 70% for the films prepared at a substrate temperature of 300 and 600 K, respectively. It has been found that the dependence of the superconducting transition temperature on the thickness of the Pb layer at a fixed thickness of the Heusler layer is determined by the degree of spin polarization of the conduction band in the ferromagnetic layer.  相似文献   

20.
The formation of the Co/Si(110)16 × 2 interface and its magnetic properties are studied by high-energy-resolution photoelectron spectroscopy using synchrotron radiation and magnetic linear dichroism in the photoemission of core electrons. It is shown that a cobalt coating less than 7 Å thick deposited on the silicon surface at room temperature results in the formation of an ultrathin (1.7 Å) interfacial cobalt silicide layer and a layer of silicon-cobalt solid solution. The ferromagnetic ordering of the interface is observed at an evaporation dose corresponding to 6–7 Å in which case a cobalt metal film begins to grow on the solid solution layer. During 300°C-annealing of the sample covered by a nanometer-thick cobalt layer, the metal film gradually disappears and four silicide phases arise: metastable ferromagnetic silicide Co3Si and three stable nonmagnetic silicides (Co2Si, CoSi, and CoSi2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号