首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
高压下氢的研究一直是高压物理实验和理论研究的热点,这源于人们对压致金属态—金属氢的追求。氢的压致金属化归根结底是氢的电子结构变化。在压力作用下,氢的电子结构会从低压下的宽禁带绝缘体转变为高压下的窄带隙半导体,最终成为超高压下带隙闭合的金属态。然而,多年来,由于实验条件所限,一直无法对氢的宽禁带带隙和电子结构进行直接实验观测。本文将介绍氢金属化实验技术方面存在的挑战和经历的发展,以及利用新近发展的基于同步辐射非弹性X射线散射技术首次对宽禁带固态氢带隙的研究和相关技术突破,并探讨其可能的发展趋势和方向。  相似文献   

2.
固氢金属化转变压力的理论计算   总被引:2,自引:0,他引:2       下载免费PDF全文
 利用简单金属的赝势理论方法计算了固氢的金属转变压力,并探讨了金属氢可能的晶体结构及力、热物性。计算结果表明,在绝对零度条件下,分子态固氢(HCP结构)向原子相金属氢(FCC结构)的转变压力pt=465.95 GPa。  相似文献   

3.
射频磁控溅射低温制备非晶铟镓锌氧薄膜晶体管   总被引:1,自引:1,他引:0       下载免费PDF全文
利用射频磁控溅射技术室温制备了铟镓锌氧(IGZO)薄膜,采用X射线衍射(XRD)表征薄膜的晶体结构,原子力显微镜(AFM)观察其表面形貌,分光光度计测量其透光率。结果表明:室温制备的IGZO薄膜为非晶态且薄膜表面均匀平整,可见光透射率大于80%。将室温制备的IGZO薄膜作为有源层,在低温(<200℃)条件下成功地制备了铟镓锌氧薄膜晶体管(a-IGZO TFT),获得的a-IGZO-TFT器件的场效应迁移率大于6.0 cm2.V-1.s-1,开关比约为107,阈值电压为1.2 V,亚阈值摆幅(S)约为0.9 V/dec,偏压应力测试a-IGZO TFT阈值电压随时间向右漂移。  相似文献   

4.
磁性蓄冷材料Er3Ni在液氦温区的回热式低温制冷机中已经被广泛应用,在以He-H2混合气体为工质的脉管制冷实验中发现Er3Ni与H2会发生反应,其产物在一定程度上提高了制冷机的性能,本文基于金属储氢过程的理论框架,分析了Er3Ni吸氢的机理,并推算了Er3Ni的理论吸氢量.对Er3Ni在室温条件下的吸氢量进行了实验测量...  相似文献   

5.
基于金属电子气模型,进行了温度、压力对Au反射率变化影响的研究与分析。利用DAC装置开展了压力对Au反射率变化测量实验,以及激光加热的动态温升条件下温度对Au反射率变化测量实验,获得了探测光束波长为488 nm条件下,温度(室温至350 ℃)和压力(11 GPa范围内)对Au反射特性影响的实验结果。结果表明:在11 GPa压力范围内,与温度因素相比,压力对Au的反射率变化影响可忽略;Au对488 nm波长激光的反射率变化趋势为单调递增,变化幅值达约10%,且具有反射率与温度的一一对应特性。通过动高压加载下材料温度瞬态测量要求分析,认为基于Au在488 nm波长下的反射变化特性,可建立一种适用于动高压加载下低温段(低于1000 K)的瞬态测温方法,用于解决材料动高压领域的瞬态测温技术难点。  相似文献   

6.
超高压处理对海参自溶酶活性影响的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
 海参的超高压处理与传统的处理方法相比有许多优越性,具有十分广阔的应用前景。研究了超高压处理过程中压力(0.1~550 MPa)、保压时间(0~30 min)、温度(24~62 ℃)及保压方式对海参自溶酶活性的影响。在室温、保压20 min的条件下,200 MPa左右较低压力下酶活性降低,相对残存活性为88.25%;250 MPa较高压力下自溶酶被激活,酶活性为106.77%;550 MPa高压下酶活性最低为29.81%。自溶酶活性随保压时间和温度的增加先上升后下降;保压方式对自溶酶活性的影响不大。同时利用误差反向传播神经网络(Back Propagation Neural Network,BP人工神经网络),模拟了超高压钝酶效果,与实验结果比较,平均相对误差为0.9%,可以获得较好的预测结果。研究结果表明,在一定的压力、保压时间和温度下,酶被激活,其活性上升;而在一定的压力、保压时间和温度下,酶被钝化,活性降低。对优化海参超高压钝酶工艺具有一定的参考价值。  相似文献   

7.
 在高压低温(77 K)条件下,利用红宝石荧光测压方法,系统地研究了金刚石对顶砧装置中固态氩和4∶1甲醇-乙醇混合物的传压特性。通过测量不同位置上红宝石荧光R1线的频移,确定了样品室内的压力分布。实验结果表明:在0~16 GPa的压力范围内,固态氩介质中反映介质非均匀性程度的|Δp/p|<3%、σp/p<2%,均在室温静水压条件下所允许的范围之内。红宝石荧光R线除随压力变宽外,与常压的很相似,表明固态氩在高压低温条件下是良好的传压介质。与之相比,4∶1甲醇-乙醇介质在77 K低温下的传压特性明显差于固态氩,已不适合作传压介质。  相似文献   

8.
L-天冬酰胺及其一水合物的太赫兹光谱研究   总被引:2,自引:0,他引:2       下载免费PDF全文
本文利用太赫兹时域光谱技术测量了室温条件下无水L-天冬酰胺与L-天冬酰胺一水合物的光谱特征,发现二者存在显著的差异,并利用太赫兹时域光谱技术实时检测L-天冬酰胺一水合物受热脱水的动态过程.结果表明太赫兹波对晶体结构变化、含结晶水状况以及分子间弱相互作用敏感.结合差示扫描量热法与热重分析联用、傅里叶变换红外光谱、粉末X射线衍射等多种技术分别从热学性质、分子振动等方面进行了表征,进一步确认了太赫兹实验结果的可靠性.采用基于密度泛函理论(DFT)的第一性原理平面波赝势方法,结合广义梯度近似(GGA)下的PBE交换-关联泛函,对L-天冬酰胺一水合物进行模拟计算,对实验所得太赫兹光谱与分子结构以及相互作用间的关系进行了讨论分析.  相似文献   

9.
用固相反应法制备出过渡金属Mn掺杂的ZnO系列样品,并对其进行了高压处理.高压处理后的样品,通过扫描电子显微镜和X射线衍射仪进行了微观结构的表征分析.通过磁性能的测量,初步研究了压力对Mn掺杂ZnO稀磁半导体磁性能的影响.结果表明:适当的高压处理可以有效增强材料的室温铁磁性,但当压力超过一定值后,压力会使材料的磁性能下降.  相似文献   

10.
我们在原子能研究所的铍过滤探测器谱仪上用热中子非弹性散射的方法分别测量了室温(20℃)和低温(97K)下的金属氢化合物超导体ZrV_2H_(5.05)的定域模,ZrV_2H_(5.05)的超导电性是被氢的高浓度所抑制的。  相似文献   

11.
金属氢研究新进展   总被引:2,自引:0,他引:2  
陈良辰 《物理》2004,33(4):261-265
简要介绍了金属氢的研究意义和应用前景 ,详细评述了有关的高压实验方法和最近的研究成果及进展 ,特别是固体氢的相图、结构和相变 .近十多年来 ,随着超高压技术的发展 ,已能在金刚石对顶砧 (DAC)上产生30 0GPa的静态压力 ,并可进行高压原位实验研究 .对固体氢进行了高压拉曼、同步辐射X射线、光反射和吸收、同步辐射红外光谱等一系列高压物性和相变研究 .从而确定了固体氢的三个相 ,并提出了可能的相结构 .  相似文献   

12.
Being the simplest element with just one electron and proton the electronic structure of a single Hydrogen atom is known exactly. However, this does not hold for the complex interplay between them in a solid and in particular not at high pressure that is known to alter the crystal as well as the electronic structure and eventually causes solid hydrogen to become metallic. In spite of intense research efforts the experimental realization of metallic hydrogen, as well as the theoretical determination of the crystal structure has remained elusive. Here we present a computational study showing that the distorted hexagonal P63/m structure is the most likely candidate for Phase III of solid hydrogen. We find that the pairing structure is very persistent and insulating over the whole pressure range, which suggests that metallization due to dissociation may precede eventual bandgap closure. Due to the fact that this not only resolve one of major disagreement between theory and experiment, but also excludes the conjectured existence of phonon-driven superconductivity in solid molecular hydrogen, our results involve a complete revision of the zero-temperature phase diagram of Phase III.  相似文献   

13.
Noble metals adopt close-packed structures at ambient pressure and rarely undergo structural transformation at high pressures. Platinum (Pt) is normally considered to be unreactive and is therefore not expected to form hydrides under pressure. We predict that platinum hydride (PtH) has a lower enthalpy than its constituents solid Pt and molecular hydrogen at pressures above 21.5?GPa. PtH transforms to a hexagonal close-packed or face-centered cubic (fcc) structure between 70 and 80 GPa. Linear response calculations indicate that PtH is a superconductor at these pressures with a critical temperature of about 10-25?K. These findings help to shed light on recent observations of pressure-induced metallization and superconductivity in hydrogen-rich materials. We show that the formation of fcc noble metal hydrides under pressure is common and examine the possibility of superconductivity in these materials.  相似文献   

14.
Ab initio calculations are performed to investigate the structural stability, electronic, structural and mechanical properties of 4d transition metal nitrides TMN (TM=Ru, Rh, Pd) for five different crystal structures, namely NaCl, CsCl, zinc blende, NiAs and wurtzite. Among the considered structures, zinc blende structure is found to be the most stable one among all three nitrides at normal pressure. A structural phase transition from ZB to NiAs phase is predicted at a pressure of 104 GPa, 50.5 GPa and 56 GPa for RuN, RhN and PdN respectively. The electronic structure reveals that these nitrides are metallic. The calculated elastic constants indicate that these nitrides are mechanically stable at ambient condition.  相似文献   

15.
The similarity and difference between the solid state properties of the 4f and 5f transition metals are pointed out. The heavier 5f elements show properties which have direct correspondence to the early 4f transition metals, suggesting a localized behaviour of the 5f electrons for those metals. On the other hand, the fact that Pu metal has a 30% lower volume than its neighbour heavier element, Am, suggests a tremendous difference in the properties of the 5f electrons for this element relative to the heavier actinides. This change in behaviour between Pu and Am can be viewed as a Mott transition within the 5f shell as a function of the atomic number Z. On the metallic 5f side of the Mott transition (i.e., early actinides), the elements show most unusual crystal structures, the common feature being their low symmetry. An analogous behaviour for the lanthanides is found in cerium metal under compression, where structures typical for the light actinides have been observed experimentally. A generalized phase diagram for the actinides is shown to contain features comparable to the individual phase diagram of Ce metal. The crystal structure behaviour of the lanthanides and heavier actinides is determined by the number of 5d (or 6d) electrons in the metallic state, since for these elements the f electrons are localized and nonbonding. For the earlier actinide metals electronic structure calculations - where the 5f orbitals are treated as part of the valence bands - account very well for the observed ground state crystal structures. The distorted structures can be understood as Peierls distortions away from the symmetric bcc structure and originate from strongly bonding 5f electrons occupying relatively narrow 5f states. High pressure is an extremely useful experimental tool to demonstrate the interrelationship between the lanthanides and the actinides. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Simple diatomic molecules exhibit a variety of exciting physical phenomena under high pressures, including structural transitions, pressure induced metallization, and superconductivity. Oxygen is of particular interest because it carries a magnetic moment. For the first time we studied the magnetic structure in solid oxygen under very high pressure by a direct method, namely, neutron diffraction. A new type of magnetic order with ferromagnetic stacking of the antiferromagnetic O2 planes was discovered in delta-O2 at P=6.2 GPa. We show that all structural transformations at pressures <7 GPa are driven by spin interactions; therefore, high-pressure oxygen should be considered as a unique "spin-controlled crystal."  相似文献   

17.
 利用第一原理的平面波-赝势密度泛函方法,研究了零温下体心立方(bcc)金属锂由于氢的替位掺杂和外界压力的改变所引起的电子结构变化。结果表明:掺杂体系仍然呈金属性,但是由于氢原子俘获了一个金属自由电子,具有了离子属性,使得费米面以下出现了孤立能带和带隙,最低金属价带偏离了自由电子带,形成鞍型带底,其它价带和导带均出现不同程度的简并解除和带型畸变。在压力的作用下,带隙加宽,费米面下的孤立带趋向于一条直线,成为一条能级。  相似文献   

18.
Simple molecular solids become unstable at high pressures, typically transforming to dense framework and/or metallic structures. We report formation of an unusual ionic solid NO(+)NO(3)(-) (nitrosonium nitrate) from N(2)O at pressures above 20 GPa and temperatures above 1000 K. Synchrotron x-ray diffraction indicates that the compound crystallizes with a structure related to the aragonite form of CaCO(3) and NaNO(3). Raman and infrared spectroscopic data indicate that the structure is noncentrosymmetric and exhibits a strong pressure dependent charge transfer and orientational order.  相似文献   

19.
Qun Chen 《中国物理 B》2022,31(5):56201-056201
Pressure is an effective and clean way to modify the electronic structures of materials, cause structural phase transitions and even induce the emergence of superconductivity. Here, we predicted several new phases of the ZrXY family at high pressures using the crystal structures search method together with first-principle calculations. In particular, the ZrGeS compound undergoes an isosymmetric phase transition from P4/nmm-I to P4/nmm-II at approximately 82 GPa. Electronic band structures show that all the high-pressure phases are metallic. Among these new structures, P4/nmm-II ZrGeS and P4/mmm ZrGeSe can be quenched to ambient pressure with superconducting critical temperatures of approximately 8.1 K and 8.0 K, respectively. Our study provides a way to tune the structure, electronic properties, and superconducting behavior of topological materials through pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号