首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Three axisymmetric laminar coflow diffusion flames, one of which is a nitrogen-diluted methane/air flame (the ‘base case’) and the other two of which consist of nitrogen-diluted methane vs. pure oxygen, are examined both computationally and experimentally. Computationally, the local rectangular refinement method is used to solve the fully coupled nonlinear conservation equations on solution-adaptive grids. The model includes C2 chemistry (GRI 2.11 and GRI 3.0 chemical mechanisms), detailed transport, and optically thin radiation. Because two of the flames are attached to the burner, thermal boundary conditions at the burner surface are constructed from smoothed functional fits to temperature measurements. Experimentally, Raman scattering is used to measure temperature and major species concentrations as functions of the radial coordinate at various axial positions. As compared to the base case flame, which is lifted, the two oxygen-enhanced flames are shorter, hotter, and attached to the burner. Computational and experimental flame lengths show excellent agreement, as do the maximum centreline temperatures. For each flame, radial profiles of temperature and major species also show excellent agreement between computations and experiments, when plotted at fixed values of a dimensionless axial coordinate. Computational results indicate peak NO levels in the oxygen-enhanced flames to be very high. The majority of the NO in these flames is shown to be produced via the thermal route, whereas prompt NO dominates for the base case flame.  相似文献   

2.
We report quantitative, spatially resolved, linear laser-induced fluorescence (LIF) measurements of methylidyne concentration ([CH]) in laminar, methane–air, counter-flow partially premixed and non-premixed flames using excitation near 431.5 nm in the A–X (0,0) band. For partially premixed flames, fuel-side equivalence ratios (B) of 1.45, 1.6 and 2.0 are studied at pressures of 1, 3, 6, 9 and 12 atm. For non-premixed flames, the fuel-side mixture consists of 25% CH4 and 75% N2; measurements are obtained at pressures of 1, 2, 3, 4, 5, 6, 9 and 12 atm. The quantitative CH measurements are compared with predictions from an opposed-flow flame code utilizing two GRI chemical kinetic mechanisms (versions 2.11 and 3.0). LIF measurements of [CH] are corrected for variations in the quenching rate coefficient by using major species concentrations and temperatures generated by the code along with suitable quenching cross sections for CH available from the literature. A pathway analysis provides relative contributions from important elementary reactions to the total amount of CH produced at various pressures. Key reactions controlling peak CH concentrations are also identified by using a sensitivity analysis. For the partially premixed flames, measured CH profiles are reproduced reasonably well by GRI 3.0, although some quantitative disagreement exists at all pressures. Two CH radical peaks are observed for B=1.45 and B=1.6 at pressures above 3 atm. Peak CH concentrations for the non-premixed flames are significantly underpredicted by GRI 3.0. The latter agrees with previously reported NO concentrations, which are also underpredicted in these same high-pressure counter-flow diffusion flames. PACS 07.35.+k; 42.62.Fi; 82.33.Vx  相似文献   

3.
In this paper, the importance of fluctuations in flow field parameters is studied under MILD combustion conditions. In this way, a turbulent non-premixed CH4+H2 jet flame issuing into a hot and deficient co-flow air is modeled using the RANS Axisymmetric equations. The modeling is carried out using the EDC model to describe the turbulence-chemistry interaction. The DRM-22 reduced mechanism and the GRI2.11 full mechanism are used to represent the chemical reactions of H2/methane jet flame. Results illustrate that although the fluctuations in temperature field are small and the reaction zone volume are large in the MILD regime, the fluctuations in temperature and species concentrations are still effective on the flow field. Also, inappropriate dealing with the turbulence effect on chemistry leads to errors in prediction of temperature up to 15% in the present flame. By decreasing of O2 concentration of hot co-flow air, the effect of fluctuations in flow field parameters on flame characteristics are still significant and its effect on species reaction rates does not decrease. On the other hand, although decreasing of jet inlet Reynolds number at constant inlet turbulence intensity addresses to smaller fluctuations in flow filed, it does not lead to lower the effect of turbulence on species distribution and temperature field under MILD combustion conditions.  相似文献   

4.
Reduced mechanisms for methane-air and hydrogen-air combustion including NO formation have been constructed with the computational singular perturbation (CSP) method using the fully automated algorithm described by Massias et al. The analysis was performed on solutions of unstrained adiabatic premixed flames with detailed chemical kinetics described by GRI 2.11 for methane and a 71-reaction mechanism for hydrogen including NO x formation. A 10-step reduced mechanism for methane has been constructed which reproduces accurately laminar burning velocities, flame temperatures and mass fraction distributions of major species for the whole flammability range. Many steady-state species are also predicted satisfactorily. This mechanism is an improvement over the seven-step set of Massias et al, especially for rich flames, because the use of HCNO, HCN and C2H2 as major species results in a better calculation of prompt NO. The present 10-step mechanism may thus also be applicable to diffusion flames. A five-step mechanism for lean and hydrogen-rich combustion has also been constructed based on a detailed mechanism including thermal NO. This mechanism is accurate for a wide range of the equivalence ratio and for pressures as high as 40 bar. For both fuels, the CSP algorithm automatically pointed to the same steady-state species as those identified by laborious analysis or intuition in the literature and the global reactions were similar to well established previous methane-reduced mechanisms. This implies that the method is very well suited for the study of complex mechanisms for heavy hydrocarbon combustion.M This article features supplementary data files available from the supplemental page in the online journal.  相似文献   

5.
This study has been mainly motivated to assess computationally and theoretically the conditional moment closure (CMC) model and the transient flamelet model for the simulation of turbulent nonpremixed flames. These two turbulent combustion models are implemented into the unstructured grid finite volume method that efficiently handles physically and geometrically complex turbulent reacting flows. Moreover, the parallel algorithm has been implemented to improve computational efficiency as well as to reduce the memory load of the CMC procedure. Example cases include two turbulent CO/H2/N2 jet flames having different flow timescales and the turbulent nonpremixed H2/CO flame stabilized on an axisymmetric bluff-body burner. The Lagrangian flamelet model and the simplified CMC formulation are applied to the strongly parabolic jet flame calculation. On the other hand, the Eulerian particle flamelet model and full conservative CMC formulation are employed for the bluff-body flame with flow recirculation. Based on the numerical results, a detailed discussion is given for the comparative performances of the two combustion models in terms of the flame structure and NO x formation characteristics.  相似文献   

6.
NH is a key short-lived radical involved in the prompt-NO formation. Quantification of NH is thus particularly important for testing the NO kinetic mechanisms. However, quantitative measurements of native NH in hydrocarbon/oxygen/nitrogen flames remain very scarce. Therefore, in this work, the mole fractions of native NH were obtained using a combination of laser-based diagnostics; Laser Induced Fluorescence (LIF) and Cavity Ring-Down Spectroscopy (CRDS). The NH species was probed after exciting the transition R1(6) in the A3Π-X3Σ? (0-0) system at 333.9?nm. The mole fraction profiles of NH were successfully obtained in premixed low-pressure flames of CH4/O2/N2 and C2H2/O2/N2 at two equivalence ratios of 1.00 and 1.25. The estimated detection limit for the NH radical was around 4.5?×?108 molecule cm?3 (i.e. 2 ppb in mole fraction at 1600?K), which is nearly 2 orders of magnitude lower than previous values reported in the literature. These new experimental results were compared with predictions by a recently developed NO model (namely NOMecha2.0). In the case of the CH4 flames, a satisfying agreement between the experiment and model was observed. However, in the case of the C2H2 flames, some discrepancies were observed. Model analysis has highlighted the importance of the HCCO radicals in the NH formation through the HCNO→HNCO→NH2 reactions pathway. Modification of the rate constant values of the reactions C2H2+?O and HCCO?+?O2, which are key reactions for both the acetylene laminar flame speed and the HCCO predictions, has enabled the model to satisfactorily predict the experimental NH and NO profiles also in the C2H2 flames.  相似文献   

7.
On the basis of a multi-step kinetic mechanism for flame inhibition by organophosphorus compounds including more than 200 reactions, a skeletal mechanism for flame inhibition by trimethylphosphate was developed. The mechanism consists of 22 irreversible elementary reactions, involving nine phosphorus-containing species. Selection of the crucial steps was performed by analysing P-element fluxes from species to species and by calculating net reaction rates of phosphorus-involving reactions versus the flames zone. The developed mechanism was validated by comparing the modelling results with the measured and simulated (using the starting initial mechanism) speed and the chemical structure of H2/O2, CH4/O2 and syngas/air flames doped with trimethylphosphate. The mechanism was shown to satisfactorily predict the speed of H2/O2/N2 flames with various dilution ratios, CH4/air and syngas/air flames doped with trimethylphosphate. The skeletal mechanism was also shown to satisfactorily predict the spatial variation of H and OH radicals and the final phosphorus-containing products of the inhibitor combustion. Further reduction of the skeletal mechanism without modification of the rate constants recommended in the starting mechanism was shown to result in noticeable disagreement of the flame speed and structure.  相似文献   

8.
The combustion and emission production processes of a DISI (direct-injection spark-ignition) engine were modelled by combining flamelet models for premixed and diffusion flames. A new surrogate fuel was proposed to approximate the complicated composition of real gasoline. In contrast to simpler conventional models, the fuel was modelled as a ternary mixture of three hydrocarbons: iso-octane, n-heptane and toluene. Turbulent flame propagation in a partially premixed field was modelled by a premixed flamelet model. The mass fractions of the detailed composition of species in burnt gas were predicted by a diffusion flamelet model. For the pollutant formation modelling, a two-step oxidation of CO and H2 was used to simulate the secondary diffusion flame. The extended Zeldovich mechanism was used to model NOx formation, while a phenomenological model was used to model soot formation. This model was initially applied to a simple geometry to investigate the fundamentals of the model's behaviour, after which three-dimensional computational fluid dynamic (CFD) simulations were performed in a realistic engine geometry.  相似文献   

9.
Lean premixed combustion has potential advantages of reducing pollutants and improving fuel economy. In some lean engine concepts, the fuel is directly injected into the combustion chamber resulting in a distribution of lean fuel/air mixtures. In this case, very lean mixtures can burn when supported by hot products from more strongly burning flames. This study examines the downstream interaction of opposed jets of a lean-limit CH4/air mixture vs. a lean H2/air flame. The CH4 mixtures are near or below the lean flammability limit. The flame composition is measured by laser-induced Raman scattering and is compared to numerical simulations with detailed chemistry and molecular transport including the Soret effect. Several sub-limit lean CH4/air flames supported by the products from the lean H2/air flame are studied, and a small amount of CO2 product (around 1% mole fraction) is formed in a “negative flame speed” flame where the weak CH4/air mixture diffuses across the stagnation plane into the hot products from the H2/air flame. Raman scattering measurements of temperature and species concentration are compared to detailed simulations using GRI-3.0, C1, and C2 chemical kinetic mechanisms, with good agreement obtained in the lean-limit or sub-limit flames. Stronger self-propagating CH4/air mixtures result in a much higher concentration of product (around 6% CO2 mole fraction), and the simulation results are sensitive to the specific chemical mechanism. These model-data comparisons for stronger CH4/air flames improve when using either the C2 or the Williams mechanisms.  相似文献   

10.
To avoid the complexities associated with the droplet/vapor transport and nonuniform evaporation processes, a fundamental investigation of liquid fuel combustion in idealized configurations is very useful. An experimental–computational investigation of prevaporized n-heptane nonpremixed and partially premixed flames established in a counterflow burner is described. There is a general agreement between various facets of our nonpremixed flame measurements and the literature data. The partially premixed flames are characterized by a double flame structure. This becomes more distinct as the strain rate decreases and partial premixing increases, which also increases the separation distance between the two reaction zones. The peak partially premixed flame temperature increases with increasing premixing of the fuel stream. The peak CO2 and H2O concentrations are relatively insensitive to partial premixing. The CO and H2 peak concentrations on the premixed side increase as the fuel-side equivalence ratio decreases. These species are transported to the nonpremixed reaction zone where they oxidize. The C2 species have peaks in the premixed reaction zone. The concentrations of olefins are ten times larger than those of the corresponding paraffins. The oxidizer is present in partially premixed flames throughout the combustion system and there are no regions characterized by simultaneous high temperature and high fuel concentration. As a result, pyrolysis reactions leading to soot formation are greatly diminished.  相似文献   

11.
12.
13.
In this study, the influence of pressure and fuel dilution on the structure and geometry of coflow laminar methane–air diffusion flames is examined. A series of methane-fuelled, nitrogen-diluted flames has been investigated both computationally and experimentally, with pressure ranging from 1.0 to 2.7 atm and CH4 mole fraction ranging from 0.50 to 0.65. Computationally, the MC-Smooth vorticity–velocity formulation was employed to describe the reactive gaseous mixture, and soot evolution was modelled by sectional aerosol equations. The governing equations and boundary conditions were discretised on a two-dimensional computational domain by finite differences, and the resulting set of fully coupled, strongly nonlinear equations was solved simultaneously at all points using a damped, modified Newton's method. Experimentally, chemiluminescence measurements of CH* were taken to determine its relative concentration profile and the structure of the flame front. A thin-filament ratio pyrometry method using a colour digital camera was employed to determine the temperature profiles of the non-sooty, atmospheric pressure flames, while soot volume fraction was quantified, after evaluation of soot temperature, through an absolute light calibration using a thermocouple. For a broad spectrum of flames in atmospheric and elevated pressures, the computed and measured flame quantities were examined to characterise the influence of pressure and fuel dilution, and the major conclusions were as follows: (1) maximum temperature increases with increasing pressure or CH4 concentration; (2) lift-off height decreases significantly with increasing pressure, modified flame length is roughly independent of pressure, and flame radius decreases with pressure approximately as P?1/2; and (3) pressure and fuel stream dilution significantly affect the spatial distribution and the peak value of the soot volume fraction.  相似文献   

14.
We investigate the effects of varying the degree of burner stabilization on Fenimore NO formation in fuel-rich low-pressure flat CH4/O2/N2 flames. Towards this end, axial profiles of flame temperature and OH, NO and CH mole fractions are measured using laser-induced fluorescence (LIF). The experiments are performed at equivalence ratios between 1.3 and 1.5. The flame temperature is seen to decrease by 200-300 K, with a concomitant decrease in OH mole fraction, upon reducing the total flow rate from 5 to 3 L/min, thus increasing stabilization. At equivalence ratios between 1.3 and 1.5, this decrease in flow rate lowers the maximum CH mole fraction by a factor of 2, and the NO mole fraction by ∼40% in all flames studied. Integrating the reaction rate for CH + N2 to estimate Fenimore NO formation, using the rate coefficient in GRI-Mech 3.0, and the measured temperatures and CH profiles show very good agreement with the measured NO mole fraction for ? = 1.3 and 1.4, supporting the current choice for this rate. This agreement also shows that the increase in residence time caused by increased stabilization is an important factor in the ultimate impact of the changes in CH mole fraction on NO formation. The results at ? = 1.5 suggest that substantial quantities of fixed nitrogen species, e.g., HCN, are only slowly oxidized in the post-flame zone under these conditions, leading to a significant discrepancy between the measured NO mole fraction and that obtained by integrating over the CH profile. Detailed calculations using GRI-Mech 3.0 predict the experimental results at ? = 1.3 nearly quantitatively, but show increasing differences with the measurements for both CH and NO profiles with increasing equivalence ratio.  相似文献   

15.
The role of methylene in prompt NO formation   总被引:1,自引:0,他引:1  
We address the plausibility of singlet methylene (1CH2) in the prompt NO formation mechanism via examination of experimental species profiles and kinetic flame modeling of several low-pressure methane-oxygen-nitrogen flames. Existing kinetic models assuming CH as the only prompt NO precursor greatly underpredict NO formation under very fuel-lean conditions. We have constructed a kinetic pathway initiated by the recombination of singlet CH2 with molecular nitrogen to form diazomethane, CH2NN, early in the flame. Although the majority of the diazomethane is predicted to react with flame radicals to regenerate N2, a small percentage (approximately 10%) is predicted to react via cleavage of the NN bond leading to NO formation. This leads to accurate prediction of the experimental measurements of NO formation in lean, low-pressure flames. Assuming reasonable kinetic parameters for the reactions of CH2, the large underprediction of NO under lean conditions can be rectified by the inclusion of the 1CH2 prompt NO pathway in the kinetic mechanism.  相似文献   

16.
The multiple mapping conditioning (MMC) approach is applied to two non-piloted CH4/H2/N2 turbulent jet diffusion flames with Reynolds numbers of Re = 15,200 and 22,800. The work presented here examines primarily the suitability of MMC to simulate CH4/H2 flames with varying Re numbers. The equations are solved in a prescribed Gaussian reference space with only one stochastic reference variable emulating the fluctuations of mixture fraction. The mixture fraction is considered as the only major species on which the remaining minor species are conditioned. Fluctuations around the conditional means are ignored. It is shown that the statistics of the mapped reference field are an accurate model for the statistics of the physical field for both flames. A transformation of the Gaussian reference space introduced in previous work on MMC is used to express the MMC model in the same form as CMC. The most important advantage of this transformation is that the conditionally averaged scalar dissipation term is in a closed form. The corresponding temperature and reactive species predictions are generally in good agreement with experimental data. The application to real laboratory flames and the assessment of the new conditional scalar dissipation model for the closure of the singly conditioned CMC equation is the major novelty of this paper. The results are therefore primarily examined with respect to changes of the conditionally averaged quantities in mixture fraction space.  相似文献   

17.
The influence of Soret diffusion on lean premixed flames propagating in hydrogen/air mixtures is numerically investigated with a detailed chemical and transport models at normal and elevated pressure and temperature. The Soret diffusion influence on the one-dimensional (1D) flame mass burning rate and two-dimensional (2D) flame propagating characteristics is analysed, revealing a strong dependency on flame stretch rate, pressure and temperature. For 1D flames, at normal pressure and temperature, with an increase of Karlovitz number from 0 to 0.4, the mass burning rate is first reduced and then enhanced by Soret diffusion of H2 while it is reduced by Soret diffusion of H. The influence of Soret diffusion of H2 is enhanced by pressure and reduced by temperature. On the contrary, the influence of Soret diffusion of H is reduced by pressure and enhanced by temperature. For 2D flames, at normal pressure and temperature, during the early phase of flame evolution, flames with Soret diffusion display more curved flame cells. Pressure enhances this effect, while temperature reduces it. The influence of Soret diffusion of H2 on the global consumption speed is enhanced at elevated pressure. The influence of Soret diffusion of H on the global consumption speed is enhanced at elevated temperature. The flame evolution is more affected by Soret diffusion in the early phase of propagation than in the long run due to the local enrichment of H2 caused by flame curvature effects. The present study provides new insights into the Soret diffusion effect on the characteristics of lean hydrogen/air flames at conditions that are relevant to practical applications, e.g. gas engines and turbines.  相似文献   

18.
The detailed flame structure of laminar premixed cellular flames in the tubular domain is simulated in 2D using a fully-implicit primitive variable finite difference formulation that includes multicomponent transport and detailed chemical kinetics. Numerical results for H2/air flames are presented and compared against spatially resolved experimental measurements of temperature and chemical species including atomic H and OH. The experimental results compare well for flame structure and cell number, despite the numerical model under-predicting the peak temperature by 200 K. Numerical experiments were performed to assess the ability for cellular tubular flames to impact experimental and numerical investigations of practical flames. The cellular flame structure is found to provide a highly sensitive geometry that is useful for validating diffusive transport modelling approximations. This capability is exemplified through the development of a simple and accurate approximation for thermal diffusion (i.e. the Soret effect) that is suitable for practical combustion codes.  相似文献   

19.
A three mixture fraction flamelet model is proposed for multi-stream laminar pulverized coal combustion. The technique of coordinate transformation is utilized to map the flamelet solutions from a unit pyramid space into a unit cubic space to improve the stability of the simulation. The validity of the three mixture fraction flamelet model was assessed on different configurations, including a laminar counterflow pulverized coal/methane flame and a laminar piloted pulverized coal jet flame. The flamelet predictions were compared to the reference results of the detailed chemistry solutions. For the counterflow flame, it was found that the flame temperature and major species mass fractions are correctly predicted by the three mixture fraction flamelet model. However, discrepancies are observed for combustion-mode-sensitive species such as CO and H2 in the premixed combustion region. The thermo-chemical quantities in the char surface reaction zone cannot be correctly predicted if the mixing between the char off-gas stream and other streams is neglected. For the piloted jet flame, it was shown that the stable thermo-chemical variables can be correctly predicted at the upper and middle stream locations. However, at the downstream location, discrepancies can be observed in certain regions. Overall, the validity of the three mixture fraction flamelet model for multi-stream pulverized coal combustion is confirmed and its performance in turbulent pulverized coal combustion will be tested in future work.  相似文献   

20.
The Lagrangian CMC method was implemented in the open source programme OpenFOAM and applied to turbulent nonpremixed bluff body and swirl flames. Lagrangian CMC is more efficient than Eulerian CMC with the number of Lagrangian flame groups much less than the number of computational cells for Eulerian CMC equations in general. It is based on the conditional flame structure depending on the residence time of the fuel of fixed Lagrangian identity from the nozzle. According to sensitivity study the injected fuel was divided into ten flame groups according to the injection sequence with the resulting conditional profiles between those by ISR and Eulerian CMC. Minor deviation from Eulerian CMC was attributed to the flame structure that is difficult to be characterised by the residence time only in elliptic recirculating flows of the bluff body and swirl flames. The Eulerian and Lagrangian CMC showed the same trend of deviation from measurements for conditional temperature, H2O, OH, CO and H2 mass fractions. The significant deviation of H2 was due to uncertainty in the reaction chemistry, as observed in the previous works based on other reaction mechanisms for methane and methanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号