首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
声致发光气泡内水蒸气的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
谢崇国  安宇  应崇福 《物理学报》2003,52(1):102-108
提出了一个单气泡声致发光的简单计算模型.这个模型是在均匀压强近似下,考虑质量和温度在气泡内的非均匀分布,同时考虑了水蒸气在气泡壁上的凝结与蒸发以及水蒸气在气泡内相对惰性气体的质量扩散.通过Saha方程估算气体电离密度,利用电子与离子、电子与中性粒子的轫致辐射,电子与离子的复合辐射公式估算气泡的辐射强度.不考虑化学反应,计算了不同水温时的气泡发光强度,发现当水温在0 ℃时轫致辐射发光模型比较符合实验结果,水温升高时,如水温为20 ℃或以上,轫致辐射发光模型的计算与实验结果出现数量级差别.考虑化学反应,轫致辐射发光模型的计算则总是比实验结果低2个数量级.  相似文献   

2.
耦合双泡声空化特性的理论研究   总被引:2,自引:0,他引:2       下载免费PDF全文
王德鑫  那仁满都拉 《物理学报》2018,67(3):37802-037802
当双泡中心间距足够小时,由于气泡间辐射压力波的存在,作用在气泡上的压力不等于外部驱动压力.通过考虑双泡之间的辐射压力波,利用改进的Keller-Miksis方程,分别计算了不同大小、不同间距、含不同惰性气体的双泡在声空化过程中半径的变化、次Bjerknes力的变化和双泡内温度的变化.计算结果表明,当双泡大小不同时,小气泡受到的抑制作用较强,温度变化也比较大.随着双泡间距离从100μm增大到1 cm时,气泡间的次Bjerknes力的数量级从10~(-4)N减小到10~(-8)N.含不同惰性气体的耦合双泡在回弹阶段表现出明显不同的振荡规律.  相似文献   

3.
Line emission in single-bubble sonoluminescence   总被引:8,自引:0,他引:8  
We report that single-bubble sonoluminescence (SBSL) at low light intensities produces emission bands similar to multibubble sonoluminescence (MBSL) for pure noble gas bubbles. A smooth crossover between SBSL and MBSL behavior can be induced by varying the acoustic pressure amplitude and thereby the intensity of the light emitted. The relative intensity of the band emission depends both on the molecular weight of the noble gas and the water temperature. Our results provide a connection between the mechanisms SBSL and MBSL and show that molecular emission plays a role in SBSL.  相似文献   

4.
安宇  张文娟 《中国物理 B》2012,21(1):17806-017806
Cavitation luminescence is light emission from gases that are compressed to high temperature and high pressure inside a bubble or group of bubbles. The numerical simulation in this study indicates that if the temperature and pressure inside a bubble are not high enough, then dim and spectral line emission dominates. However, if the temperature and pressure inside the bubble are very high, then the light is bright and a continuum spectrum will be generated. Calculations of the spectrum using modified equations of bubble motion can simulate the spectral profile well. However, pulse width calculations using these equations only partly agree with the experimental results.  相似文献   

5.
Sonoluminescence (SL) radiation from different solutions of phosphoric acid has been studied in the framework of a hydro-chemical simulation. By calculating the phase diagrams of an SL bubble in different concentrations of phosphoric acid, the optimum solution for acquiring maximum SL emission has been specified as the solution of around 30 wt.% acid. It is shown that the SL temperature and the number of particles inside the bubble at the time of SL emission are two important factors determining the optimum solution. Numerical calculation of the SL intensity shows that the optimum solution has an intensity of about 20 times greater than that of water. Also, contributions of different energy sources in creation of thermal energy of the bubble have been calculated. The result indicates that the work of external driving pressure is the most important factor to determine the ultimate thermal energy of the bubble at the time of SL emission. Based on this result, we have reasoned out that in the determination of the optimum solution, the role of viscosity of the acid solutions is more important than the vapor pressure.  相似文献   

6.
Effect of thermal conduction on radiation from a single cavitating bubble has been studied in a hydrochemical framework including variation of heat conductivity of noble gases up to 2500 K. Results of numerical simulation show that thermal conductivity plays an important role in determining ultimate cavitation temperature. Higher thermal conductivity of lighter noble gases causes to more thermal dissipation during the bubble collapse, leading to a lower peak temperature. Moreover, at the same driving conditions, radius of light emitting region is greater for heavier noble bubbles. Therefore, sonoluminescence radiation is more intensive from heavier noble gases. Phase diagrams of single-bubble sonoluminescence have also been calculated and in comparison with available experimental data, there is a relatively good agreement between the theory and experiment for noble gases.  相似文献   

7.
安宇 《中国物理 B》2008,17(8):2984-2988
Using the equations of fluid mechanics with proper boundary conditions and taking account of the gas properties, we can numerically simulate the process of single bubble sonoluminescence, in which electron-neutral atom bremsstrahlung, electron-ion bremsstrahlung and recombination radiation, and the radiative attachment of electrons to atoms and molecules contribute to the light emission. The calculation can quantitatively or qualitatively interpret the experimental results. We find that the accumulated heat energy inside the compressed gas bubble is mostly consumed by the chemical reaction, therefore, the maximum degree of ionization inside Xe bubble in water is much lower than that in sulfuric acid, of which the vapour pressure is very low. In addition, in sulfuric acid much larger pa and R0 are allowed which makes the bubbles in it much brighter than that in water.  相似文献   

8.
Multibubble sonoluminescence (MBSL) spectra of water from cavitation clouds were collected in the presence of different noble gases and at different acoustic intensities. Results show that at high acoustic intensity and with xenon as a dissolved gas the emission of the OH* radical becomes indiscernible from the continuum. These spectra resemble single-bubble sonoluminescence (SBSL) spectra. It is concluded that the source of emission in MBSL and SBSL can be the same, the difference in spectra is due to the higher temperature inside the bubble during SBSL.  相似文献   

9.
A quartz-chamber 2.45 GHz electron cyclotron resonance ion source(ECRIS) was designed for diagnostic purposes at Peking University [Patent Number: ZL 201110026605.4]. This ion source can produce a maximum 84 m A hydrogen ion beam at 50 k V with a duty factor of 10%. The root-mean-square(RMS) emittance of this beam is less than 0.12π mm mrad. In our initial work,the electron temperature and electron density inside the plasma chamber had been measured with the line intensity ratio of noble gases. Based on these results, the atomic and molecular emission spectra of hydrogen were applied to determine the dissociation degree of hydrogen and the vibrational temperature of hydrogen molecules in the ground state, respectively. Measurements were performed at gas pressures from 4×10~(-4) to 1×10~(-3) Pa and at input peak RF power ranging from 1000 to 1800 W. The dissociation degree of hydrogen in the range of 0.5%-10% and the vibrational temperature of hydrogen molecules in the ground state in the range of 3500-8500 K were obtained. The plasma processes inside this ECRIS chamber were discussed based on these results.  相似文献   

10.
Equations of state of noble gases and mixtures of them are obtained with allowance for three-body interaction by means of molecular dynamics (MD). It is shown that the difference between the critical temperature and pressure when compared to two-body interaction is observed only for heavy noble gases with high degrees of polarizability.  相似文献   

11.
Independent, quantitative measurements of continuum radiation from mercury arcs have been made at our separate laboratories and the Abel-inverted emission coefficients analyzed together. Continuum at selected wavelengths (free of atomic lines) between 0.4 and 1.3 μm were included at mercury pressures of 0.1, 1.0 and 2.7 atm. Equilibrium vapor compositions were calculated for the measured radial temperature profiles. The temperature dependence of the continuum emission was used to separate it into components from electron-Hg+ recombination, electron-neutral Hg0 bremsstrahlung and Hg2 molecular radiation. Electron-neutral bremsstrahlung is particularly strong because of the large electron scattering cross section of mercury and low fractional ionization making quantitative comparison with theory possible. Our results for this interaction are in good agreement with recent theoretical calculations of S. Geltman at 1.0 μm but ≈3 times the theoretical value at 0.5 μm.  相似文献   

12.
张宝玲  宋小勇  侯氢  汪俊 《物理学报》2015,64(1):16202-016202
采用分子动力学方法结合对关联函数分析计算了0–1000 K范围内氦的固–液相变曲线, 与实验数据的对比显示, 在0–500 K之间与实验数据符合很好, 500 K以上还没有相应的实验数据. 另外, 计算了钛金属中不同尺寸氦泡的压强, 并与高密度氦的固–液相变曲线进行了对比. 结果显示, 在低温条件下, 随着温度的降低, 钛晶体中可能会出现固态氦泡; 在300 K以上不会存在固态氦泡.  相似文献   

13.
张舍  莫润阳  王成会 《声学学报》2018,43(4):689-698
液态金属中气泡行为是磁流体力学的重要方面。为对磁场条件下导电流体中气泡动力学行为作全面理解,基于磁流体动力学方法建立了磁场条件下导电流体中气泡径向振动的无量纲化动力学方程,数值研究了磁场对导电流体中气泡径向非线性振动稳定性、泡内温度、泡内气压及液体空化阈值的影响。结果显示:磁场增强了气泡非线性振动的稳定性,随着磁场增强且当作用在泡上的电磁力与惯性力数量级可比时,气泡运动为稳定的周期性振动;同时,磁场引起泡内温度、泡内压力及液体空化阈值变化。研究表明,可用磁场调节和控制液态金属中气泡的运动使其满足工程应用需求。   相似文献   

14.
黏度是能源、动力、化工等系统设计分析中常用的重要物性参数.本文探讨了5种惰性气体(He、Ne、Ar、Kr、Xe)气相和超临界黏度的计算,以实际气体与同温度稀薄气体的黏度之比作为无量纲对比黏度,发现5种惰性气体的无量纲对比黏度与剩余熵之间满足同一单值函数关系,据此建立了惰性气体的气相和超临界黏度模型,其中稀薄气体黏度关联式借助气体动理论建立,剩余熵由Soave-Redlich-Kwong (SRK)状态方程计算.对比了183~2150 K、380 MPa以内的1819个实验数据,模型计算偏差小于1.5%的数据点占89%,偏差较大的数据点主要分布于10 MPa以上的高压区域,最大偏差为4.4%.本文模型可用于实验数据缺乏区域惰性气体黏度性质的准确预估。  相似文献   

15.
We present experimental results of atmospheric pressure glow discharges (APGD) in a dielectric barrier discharge reactor. These are examined in different noble gases and in the N/sub 2//O/sub 2/ system (air and pure N/sub 2/), under varying experimental conditions (frequency f; gap length d; and electric field intensity E). Discharge diagnostics have been carried out using ultrahigh speed imaging, and synchronous dual-detection of light emission and current-voltage measurements, the former using a photomultiplier . The time evolutions of the discharges and of columnar patterns in regular geometric arrangements at atmospheric pressure under different experimental conditions are reported for all of the noble gases studied here. We present evidence that columnar patterns and APGD are manifestations of the same discharge physics, which is discussed with reference to recent work reported by others.  相似文献   

16.
An intensified charge coupled device (ICCD) camera was used to observe the spatial distribution of sonoluminescence (SL) and sonochemiluminescence (SCL) generated by cavitation bubbles in a 1.2 MHz focused ultrasound (FU) field in order to investigate the mechanisms of acoustic cavitation under different sonication conditions for FU therapeutic applications.It was found that SL emissions were located in the post-focal region. When the intensity of SL and SCL increased as the power rose, the growth of SCL was much higher than that of SL. In the post-focal region, the SCL emissions moved along specific paths and formed branch-like streamers. At the beginning of the ultrasound irradiation, cavitation bubbles generated SCL in both the pre-focal and the post-focal region. When the electrical power or the sonication time increased, the SCL in the post-focal region increased and became higher than that in the pre-focal region. The intensity of SCL in the focal region is usually the weakest because of “oversaturation”.The spatial distribution of SCL near a tissue boundary differed from that obtained in free fields. It organized into special structures under different acoustic amplitudes. When the electrical power was relatively low, the SCL emission was conical shape which suggested a standing wave formation at the tissue-fluid boundary. When the electrical power exceeded a certain threshold, only a bright spot could be captured in the focus. The cavitation bubbles which centralized in the focus concentrated energy and hindered the formation of standing waves. With rising electrical power at high levels, besides a bright spot in the focus, there were some irregular light spots in pre-focal region, which indicated some cavitation bubbles or small bubble clusters achieved the threshold of SCL and induced the reaction with the luminol solution.  相似文献   

17.
We perform a computational simulation of the fluid dynamics of sodium doublet(Na-D)line emissions from one sonoluminescing bubble among the cavitation bubbles in argon-saturated Na hydroxide(NaOH)aqueous solutions.Our simulation includes the distributions of acoustic pressures and the dynamics of cavitation bubbles by numerically solving the cavitation dynamic equation and bubble-pulsation equation.The simulation results demonstrate that when the maximum temperature inside a luminescing bubble is relatively low,two emission peaks from excited Na are prominent within the emission spectra,at wavelengths of 589.0 and 589.6 nm.As the maximum temperature of the bubble increases,the two peaks merge into one peak and the full width at half maximum of this peak increases.These calculations match with the observations of Na-D line emissions from MBSL occurring in aqueous solutions of NaOH under an argon gas.  相似文献   

18.
Sonoluminescence spectra were collected from Cr(CO)6 solutions in octanol and dodecane saturated with various noble gases. The emission from excited-state metal atoms serves as an internal thermometer of cavitation. The intensity and temperature of sonoluminescence increases from He to Xe. The intensity of the underlying continuum, however, grows faster with increasing temperature than the line emission. Dissociation of solvent molecules within the bubble consumes a significant fraction of the energy generated by the collapsing bubble, which can limit the final temperature inside the bubble.  相似文献   

19.
The scattered acoustic pressure and scattered cross section of bubbles is studied using the scattered theory of bubbles. The nonlinear oscillations of bubbles and the scattering acoustic fields of a spherical bubble cluster are numerically simulated based on the bubble dynamic and fluid dynamic. The influences of the interaction between bubbles on scattering acoustic field of bubbles are researched. The results of numerical simulation show that the oscillation phases of bubbles are delayed to a certain extent at different positions in the bubble cluster, but the radii of bubbles during oscillation do not differ too much at different positions. Furthermore, directivity of the acoustic scattering of bubbles is obvious. The scattered acoustic pressures of bubbles are different at the different positions inside and outside of the bubble cluster. The scattering acoustic fields of a spherical bubble cluster depend on the driving pressure amplitude, driving frequency, the equilibrium radii of bubbles, bubble number and the radius of the spherical bubble cluster. These theoretical predictions provide a further understanding of physics behind ultrasonic technique and should be useful for guiding ultrasonic application.  相似文献   

20.
Yasui K 《Ultrasonics》2002,40(1-8):643-647
Computer simulations of bubble oscillations in water are performed for various noble gases taking into account the segregation of water vapor and noble gas inside a collapsing bubble, which was predicted by Storey and Szeri [J. Fluid Mech. 396 (1999) 203]. It is clarified that the number of water vapor molecules dissociated inside a collapsing bubble is larger for heavier noble gases because of the lower thermal conductivity and the segregation of vapor and noble gas. It is also clarified that the temperature inside a helium bubble at the collapse increases considerably by the mixture segregation because a lesser amount of vapor is trapped inside a collapsing bubble. It is also clarified that multibubble sonoluminescence (MBSL) from heavier noble gases is brighter because of the lower ionization potential which results in the higher electron density and stronger plasma emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号