首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microstructure and magnetic properties, i.e. the initial magnetic susceptibility, its disaccommodation, core losses and approach to ferromagnetic saturation of the bulk amorphous and partially crystallized Fe61Co10Zr2.5Hf2.5Nb2W2B20 alloy are studied. From X-ray, Mössbauer spectroscopy and electron microscopy studies we have stated that all samples in the as-quenched state are fully amorphous. However, after annealing the samples at 850 K for 30 min the crystalline α-FeCo grains embedded in the amorphous matrix are found. Moreover, from Mössbauer spectra analysis we have stated that the crystalline phase in those samples exhibits the long-range order. The alloy in the as-quenched state shows good thermal stability of the initial magnetic susceptibility. Furthermore, the intensity of the magnetic susceptibility disaccommodation in the rod is lower than in the ribbon. It is due to low quenching rate during the rod preparation which involves the reduction of free volumes. From the analysis of the isochronal disaccommodation curves, assuming the Gaussian distribution of relaxation times, we have found that activation energies of the elementary processes responsible for this phenomenon range from 1.2 to 1.4 eV. After the annealing of the samples the initial susceptibility slightly enhances and disaccommodation drastically decreases. From high-field magnetization studies we have learned that the size of structural defects depends on the quenching rate (the shape of the samples) and changes after annealing.  相似文献   

2.
The magnetic properties of Y2Fe17−xGax for 3≤x≤7 and Gd2Fe17−xGax for 5≤x≤7 have been investigated using 57Fe Mössbauer spectroscopy. These compounds have the rhombohedral Th2Zn17 structure. X-ray diffraction analysis of aligned powders shows that the easy direction of magnetization is parallel to the c-axis in Y2Fe10Ga7 and Gd2Fe10Ga7 and is perpendicular to the c-axis in Y2Fe14Ga3, Y2Fe12Ga5, Gd2Fe12Ga5 and Gd2Fe11Ga6. Mössbauer studies indicate that those samples are ordered ferromagnetically. The 57Fe hyperfine field decreases with increasing Ga content. This decrease results from the decreased magnetic exchange interactions resulting from Ga substitution. The average isomer shift, δ, for R2Fe17−xGax (R=Y and Gd) at room temperature is positive and the magnitude of δ increases with increasing Ga content.  相似文献   

3.
Zr-Ti and Hf-Ti composite nitrates were successfully developed as single-source precursors for the chemical vapor deposition (CVD) of ZrxTi1−xO2 and HfxTi1−xO2 thin films. The Zr-Ti nitrate can be assumed as a solid solution of the individual Zr and Ti nitrates, and the Zr/Ti molar ratio in the deposited ZrxTi1−xO2 films is consistent with that in the precursor. The Hf-Ti nitrate appears to be a mixture of the Hf and Ti nitrates and the composition of the deposited HfxTi1−xO2 films depends remarkably on the heating time of precursor. Both ZrxTi1−xO2 and HfxTi1−xO2 films exhibit trade-off properties between band gap and dielectric constant. The obtained results suggest that ZrxTi1−xO2 and HfxTi1−xO2 films are promising candidates for gate dielectric application to improve the scalability and reduce the leakage current of the future complementary metal-oxide-semiconductor (CMOS) devices.  相似文献   

4.
La and Co co-doped BiFeO3 ((Bi1−xLax)(Fe0.95Co0.05)O3 (x=0, 0.10, 0.20, 0.30)) ceramics were prepared by tartaric acid modified sol–gel method. The X-ray diffraction patterns indicate a transition from rhombohedral structure to tetragonal structure at x=0.20, which has been confirmed by the Raman measurements. The band gap increases with increasing x to 0.20, and then decreases with further increasing x to 0.30. The structural transition has significant effects on the multiferroic properties. The remnant magnetization and saturate ferromagnetic magnetization decrease abruptly with increasing x to 0.10, and then gradually increase with further increasing x up to 0.30. The coercivity is significantly reduced with increasing La doping concentration. The ferroelectricity has been improved by La doping, and the polarization increases with increasing x to 0.10, then decreases with further increasing x up to 0.30. The simultaneous coexistence of soft ferromagnetism and ferroelectricity at room temperature in tetragonal Bi0.70La0.30Fe0.95Co0.05O3 indicates the potential multiferroic applications.  相似文献   

5.
Polarized neutron reflectometry was used to investigate the amorphous multilayer nanostructures [(Co45Fe45Zr10)x(Al2O3)100−x/a-Si:H]m, whose magnetic properties are dependent on the concentration of the magnetic constituent (x=34, 47 and 60 at%) as well as on the thicknesses of the metal-dielectric (Co45Fe45Zr10)x(Al2O3)100−x and semiconductor a-Si:H layers. The average magnetization of the individual magnetic layer is found to be inhomogeneous with the magnetically active central part and two magnetically dead parts at the interfaces.  相似文献   

6.
Arrays of Fe0.92−xCoxP0.08 (0.22≤x≤0.78) ternary alloy nanowires were fabricated in anodic aluminium oxide templates by electrochemical deposition. The broadened peaks in transmission Mössbauer spectra and the halo in selected area electron diffraction patterns indicate that the structure of Fe0.92−xCoxP0.08 nanowires is amorphous. However, the short-range order of Fe0.92−xCoxP0.08 nanowires has a bcc structure with a [110]-preferred orientation that is parallel to the nanowires. The magnetic texture results in the magnetic moment direction of the Fe atoms being along the nanowires. The short-range order around the Fe atoms reaches a minimum at x=0.45. With increasing Co content, the average hyperfine field decreases, while the isomer shift and quadrupole splitting remain almost constant, which result from the variation of 3d and 4s electron volume density at the Fe sites.  相似文献   

7.
Co1−xNix/2Srx/2Fe2O4 (x=0–0.5 in steps of 0.1) ferrite nanoparticles have been synthesized at room temperature, without calcination, using a reverse micelle process. The site preference was determined by Mössbauer spectroscopy at 300 K. The hyperfine parameters were obtained, for the whole series of solid solutions. For the X≤0.20 samples, the spectra were fitted with two discrete sextets and for the X>0.20 samples, a magnetic hyperfine field distribution and a doublet were also imposed in the fit procedure. Hysteresis loops were measured using a superconducting quantum interference device magnetometer at 2 K and 300 K. The results indicate that the relative decrease in saturation magnetization of nanoparticles compared to the submicron particles could be attributed to a surface spin termination and disorder. Magnetic dynamics of the nanoparticles was studied by the measurement of ac magnetic susceptibility versus temperature at different frequencies and it is found that the results are well described by the Vogel–Fulcher model.  相似文献   

8.
The ferromagnetic-to-antiferromagnetic transition in the hexagonal (Hf1−xTix)Fe2 (0?x?1) intermetallic compounds has been investigated by 57Fe Mössbauer spectroscopy. At 10 K, the transition occurs within rather narrow concentration limits, around x=0.55–0.65. We found that the key factor governing the unexpected quick change of the magnetic structure is the magnetic frustration of the Fe(2a) sites. The magnetic frustration is caused by the noncollinearity of the Fe(6h) magnetic sublattice. The noncollinearity arises from the rotation of the magnetic moments due to the competition between the ferromagnetic exchange interactions and the antiferromagnetic Fe(6h)–Ti–Fe(6h) interaction. In the compounds with x=0.4–0.6, the temperature transitions to the antiferromagnetic state are observed. As an example, the Hf0.4Ti0.6Fe2 compound is completely antiferromagnetic above 200 K.  相似文献   

9.
The xFe2TiO4-(1−x)Fe3O4 pseudo-binary systems (0≤x≤1) of ulvöspinel component were synthesized by solid-state reaction between ulvöspinel Fe2TiO4 precursors and commercial Fe3O4 powders in stochiometric proportions. Crystalline structures were determined by X-ray powder diffraction (XRD) and it was found that the as-obtained titanomagnetites maintain an inverse spinel structure. The lattice parameter a of synthesized titanomagnetite increases linearly with the increase in the ulvöspinel component. 57Fe room temperature Mössbauer spectra were employed to evaluate the magnetic properties and cation distribution. The hyperfine magnetic field is observed to decrease with increasing Fe2TiO4 component. The fraction of Fe2+ in both tetrahedral and octahedral sites increases with the increase in Ti4+ content, due to the substitution and reduction of Fe3+ by Ti4+ that maintains the charge balance in the spinel structure. For x in the range of 0 ≤x≤0.4, the solid solution is ferrimagnetic at room temperature. However, it shows weak ferrimagnetic and paramagnetic behavior for x in the range of 0.4<x≤0.7. When x>0.70, it only shows paramagnetic behavior, with the appearance of quadrupole doublets in the Mössbauer spectra. Simultaneous differential scanning calorimetry and thermogravimetric analysis (DSC-TGA) studies showed that magnetite is not stable, and thermal decomposition of magnetite occurs with weight losses accompanying with exothermic processes under heat treatment in inert atmosphere.  相似文献   

10.
Nanocrystalline Nd16Fe76−xTixB8 hard magnetic powders were prepared by mechanical alloying and respective heat treatment at 973–1073 K /30–60 min. The nanocrystalline hard magnetic powders were investigated by the NanoSight Halo LM10TM Nanoparticle Analysis System, AFM, SEM and Mössbauer spectrometry. The nanocrystals have average size of 40 nm and the crystals form agglomerates with an average size of about 180 nm. HaloTM, AFM and SEM techniques are the complementary methods, which give comparable results.  相似文献   

11.
The thermal variation of reciprocal susceptibility of (GdxY1?x)Fe2 compounds obeys a Néel type variation. Both the effective and saturation iron moments decrease with the increase of yttrium content. A correlation between the exchange fields acting on iron magnetization and the Fe ordered moment is evidenced. Finally, the magnetic behaviour of iron atoms in these compounds is discussed.  相似文献   

12.
Polycrystalline Zn0.6Cu0.4Fe2O4 ferrites have been prepared using a solid-state reaction technique. Their structural and magnetic properties have been studied, using X-ray diffraction and Mössbauer and magnetic measurements. These results have been compared to a more general theoretical study, on ZnxCu1−xFe2O4, based on mean field theory and high-temperature series expansions (HTSE), and extrapolated with the Padé approximant method. The nearest neighbour super-exchange interactions for the intra-site and the inter-site of ZnxCu1−xFe2O4 spinel ferrites, in the range 0≤x≤1, have been computed using the probability approach, based on Mössbauer data. The Curie temperature TC is calculated as a function of Zn concentration. The theoretical results obtained are in good agreement with the experimental results obtained by magnetic measurements.  相似文献   

13.
A theoretical expression for the line shape of the Mössbauer spectra in the presence of electron hopping between Fe2+ and Fe3+ is obtained by using a simple stochastic model. Analyses based upon this expression show that the origin of the complicated Mössbauer spectra observed in the magnetic semiconductors Fe1?xCuxCr2S4 (0<x<0.5) at 77 K is electron hopping between Fe+2 and Fe3+ This hopping occurs at a rate of a few MHz. Quantitative estimates are given for some parameters; the isomer shifts, the internal magnetic fields, the quadrupole splittings and the proportions of Fe2+ and Fe3+. The valence distribution in this system is determined from the results. For example, the distribution Fe2+0.69Fe3+0.29Cu1+0.02Cr3+1.72Cr2+0.28S2?4 is obtained for x = 0.02. The existence of Cr2+ is concluded.  相似文献   

14.
Magnetic measurements have been performed on single crystals of Yni5 and GdNi5 and on polycrystalline samples of GdxY1?xNi5. YNi5 is a Pauli paramagnet, the susceptibility of which is enhanced by exchange and slightly temperature dependent (χ = 23 × 10?4 emu/mole at 4.2 K). In GdNi5, where the anisotropy is very weak, a polarization of the d band opposite to the Gd magnetization is observed. At 4.2 K, this polarization is 0.16 ± 0.02μB/Ni. The decrease of this polarisation with decreasing magnetic interactions has been studied in GdxY1?xNi5-type alloys. It is concluded that the polarization is more homogeneous than that of cobalt observed in GdxY1?xCo2.  相似文献   

15.
In this work, The magnetoelastic properties of polycrystalline samples of Tb3 (Fe28−xCox) V1.0 (x=0, 3, 6) intermetallic compounds are investigated by means of linear thermal expansion and magnetostriction measurements in the temperature range of 77–515 K under applied magnetic fields up to 1.5 T. The linear thermal expansion increases with the Co content. The well-defined anomalies observed in the linear thermal expansion coefficients for Tb3 (Fe28−xCox) V1.0 (x=0, 3, 6) compounds are associated with the magnetic ordering temperature for x=0 and spin reorientation temperatures for x=3, 6. Below transition temperatures, the value of the longitudinal magnetostriction (λPa) at 1.6 T increases with Co content.  相似文献   

16.
La0.8Sr0.2Co1−xFexO3 (x=0.15, 0.2, 0.3) samples were studied by means of AC magnetic susceptibility, magnetization, magnetoresistance and 57Fe Mössbauer spectrometry. Iron was found to take on a high spin 3d5−α electronic state in each of the samples, where α refers to a partly delocalized 3d electron. The compounds were found to exhibit a spin-cluster glass transition with a common transition temperature of ∼53 K. The spin-cluster glass transition is visualized in the 57Fe Mössbauer spectra as the slowing down of magnetic relaxation below ∼70 K, thereby showing that iron takes part in the formation of the glassy magnetic phase. The paramagnetic-like phase found at higher temperatures is identified below Tc≈195 K as being composed of weakly interacting, magnetically ordered nanosized clusters of magnetic ions in part with a magnetic moment oriented opposite to the net magnetic moment of the cluster. For each of the samples a considerable low-temperature negative magnetoresistance was found, whose magnitude in the studied range decreases with increasing iron concentration. The observed results obtained on the present compounds are qualitatively explained assuming that the absolute strengths of magnetic exchange interactions are subject to the relation ∣JCo–Co∣<∣JFe–Co∣<∣JFe–Fe∣.  相似文献   

17.
Measurements are reported for the magnetic susceptibility of solid solutions Fe1-xCoxO for compositions with x =0.10 to 0.95 and for the temperature range 4.2 to 600 K. It is found that the Curie-Weiss law is obeyed at high temperatures while the dependence of the susceptibility and transition temperature on composition appear to be in good agreement with the “virtual crystal” approximation.  相似文献   

18.
Bi1−xYxFeO3 (x=0-0.2) powders were prepared to study the effect of Y substitution on their structural and magnetic properties. A structural symmetric breaking from the rhombohedral R3c to orthorhombic Pnma at around x=0.10 was identified across a ferroelectric-paraelectric phase. A parabolic dependence of the magnetization upon substitution was obtained with a maximum at the phase transition boundary and a switching behavior for x=0.20. The composition-driven magnetic structure evolution was proposed to account for the magnetic properties in Bi1−xYxFeO3.  相似文献   

19.
The spontaneous volume magnetostriction is calculated for Y(Fe1?xCox)2 and Zr(Fe1?xCox)2 in the simple itinerant-electron model. The density of states for various compositions is calculated by the recursion method. The calculated results on the composition dependence of the spontaneous volume magnetostriction are shown to be consistent with the experimental ones.  相似文献   

20.
Using mean field theory and high-temperature series expansions (HTSEs), extrapolated with the Padé approximants method, the effect of Zn doping on magnetic properties of NiFe2O4 ferrite spinel has been studied. The nearest neighbour super-exchange interactions for intra-site (JAA, JBB) and inter-site (JAB) of the ZnxNi1−xFe2O4 ferrites spinels, in the range 0≤x≤1, have been computed using the probability approach, based on Mössbauer data. The paramagnetic Curie-Weiss temperature θ and the Curie temperature TC are calculated as a function of Zn concentration. The critical exponent γ associated with magnetic susceptibility is calculated. The spin correlation functions intra-plane and inter-plane have been also computed and compared with exchange couplings. The obtained theoretical results are in good agreement with experimental ones obtained by magnetic measurements and Mössbauer spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号