首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
We analyze the quantum phase transition in the Bose-Hubbard model borrowing two tools from quantum-information theory, i.e., the ground-state fidelity and entanglement measures. We consider systems at unitary filling comprising up to 50 sites and show for the first time that a finite-size scaling analysis of these quantities provides excellent estimates for the quantum critical point. We conclude that fidelity is particularly suited for revealing a quantum phase transition and pinning down the critical point thereof, while the success of entanglement measures depends on the mechanisms governing the transition.  相似文献   

2.
We study a continuous quantum phase transition that breaks a Z2 symmetry. We show that the transition is described by a new critical point which does not belong to the Ising universality class, despite the presence of well-defined symmetry-breaking order parameter. The new critical point arises since the transition not only breaks the Z2 symmetry, it also changes the topological or quantum order in the two phases across the transition. We show that the new critical point can be identified in experiments by measuring critical exponents. So measuring critical exponents and identifying new critical points is a way to detect new topological phases and a way to measure topological or quantum orders in those phases.  相似文献   

3.
We consider the Dicke Hamiltonian, a simple quantum-optical model which exhibits a zero-temperature quantum phase transition. We present numerical results demonstrating that at this transition the system changes from being quasi-integrable to quantum chaotic. By deriving an exact solution in the thermodynamic limit we relate this phenomenon to a localization-delocalization transition in which a macroscopic superposition is generated. We also describe the classical analogs of this behavior.  相似文献   

4.
We study the relationship between the behavior of global quantum correlations and quantum phase transitions in XY model. We find that the two kinds of phase transitions in the studied model can be characterized by the features of global quantum discord (GQD) and the corresponding quantum correlations. We demonstrate that the maximum of the sum of all the nearest neighbor bipartite GQDs is effective and accurate for signaling the Ising quantum phase transition, in contrast, the sudden change of GQD is very suitable for characterizing another phase transition in the XY model. This may shed lights on the study of properties of quantum correlations in different quantum phases.  相似文献   

5.
Angela Kopp 《Annals of Physics》2007,322(6):1466-1476
We propose that quantum phase transitions are generally accompanied by non-analyticities of the von Neumann (entanglement) entropy. In particular, the entropy is non-analytic at the Anderson transition, where it exhibits unusual fractal scaling. We also examine two dissipative quantum systems of considerable interest to the study of decoherence and find that non-analyticities occur if and only if the system undergoes a quantum phase transition.  相似文献   

6.
We present an analytical strong-disorder renormalization group theory of the quantum phase transition in the dissipative random transverse-field Ising chain. For Ohmic dissipation, we solve the renormalization flow equations analytically, yielding asymptotically exact results for the low-temperature properties of the system. We find that the interplay between quantum fluctuations and Ohmic dissipation destroys the quantum critical point by smearing. We also determine the phase diagram and the behavior of observables in the vicinity of the smeared quantum phase transition.  相似文献   

7.
We study the quantum phase transition mechanisms that arise in the interacting boson model. We show that the second-order nature of the phase transition from U(5) to O(6) may be attributed to quantum integrability, whereas all the first-order phase transitions of the model are due to level repulsion with one singular point of level crossing. We propose a model Hamiltonian with a true first-order phase transition for finite systems due to level crossings.  相似文献   

8.
Dynamics of a quantum phase transition   总被引:1,自引:0,他引:1  
We present two approaches to the dynamics of a quench-induced phase transition in the quantum Ising model. One follows the standard treatment of thermodynamic second order phase transitions but applies it to the quantum phase transitions. The other approach is quantum, and uses Landau-Zener formula for transition probabilities in avoided level crossings. We show that predictions of the two approaches of how the density of defects scales with the quench rate are compatible, and discuss the ensuing insights into the dynamics of quantum phase transitions.  相似文献   

9.
T.K. Ng 《哲学杂志》2015,95(26):2918-2947
We provide an overview of some modern developments in the theory of phases and phase transitions in classical and quantum systems. We show the link between non-ergodicity and fidelity in quantum systems and discuss topological phase transitions. We show that the quantum phase transitions are associated with qualitative changes in some properties of the quantum wavefunctions across the phase transition. We discuss the topological phase transition associated with p-wave superconductor since it is a topic of wide interest because of the possible observation of Majorana fermions.  相似文献   

10.
We investigated the carrier transition properties of the GaN/InGaN/GaN single quantum well bounded by AlGaN barriers. In order to confirm the carrier transition coming from the single quantum well, the single quantum well layer was etched by reactive ion etching method. The structural property of the samples was characterized by high resolution X-ray diffraction measurements. In micro-photoluminescence measurements, it is clearly shown that the donor bound exciton transition of the single quantum well sample was redshifted compared to the etched one due to strain. Moreover, a lot of peaks were observed below the GaN band gap energy due to carrier localization in the InGaN/GaN single quantum well, including carrier localization center and quantum confined states. The excitation power dependence and time resolved photoluminescence spectra were investigated to characterize the optical transition of the single quantum well.  相似文献   

11.
We calculate the minimum Gibbs free energy of the InAs/InP quantum dot multilayer by combining the method of moving asymptotes and the finite element method. Based on the principle of the least energy, the transition between vertically aligned and anti-aligned quantum dot multilayers is studied. We investigate the influence of quantum dot base size and density on critical spacer thickness for the transition. The study results indicate that the critical thickness increases with the decrease in the density of quantum dots, while the base size of the quantum dot is linear to the critical thickness when the density is given.  相似文献   

12.
王林成  申健  衣学喜 《中国物理 B》2011,20(5):50306-050306
This paper studies the discord of a bipartite two-level system coupling to an XY spin-chain environment in a transverse field and investigates the relationship between the discord property and the environment’s quantum phase transition.The results show that the quantum discord is also able to characterize the quantum phase transitions.We also discuss the difference between discord and entanglement,and show that quantum discord may reveal more general information than quantum entanglement for characterizing the environment’s quantum phase transition.  相似文献   

13.
We report an inelastic neutron-scattering study at the field-induced magnetic quantum phase transition of CeCu5.8Au0.2. The data can be described better by the spin-density-wave scenario than by a local quantum critical point, while the latter scenario was shown to be applicable to the zero-field concentration-tuned quantum phase transition in CeCu6-xAux for x=0.1. This constitutes direct microscopic evidence for a difference in the quantum fluctuation spectra at a magnetic quantum critical point driven by different tuning parameters.  相似文献   

14.
We consider two-species of fermions in a rotating trap that interact via an s-wave Feshbach resonance, at total Landau level filling factor two (or one for each species). We show that the system undergoes a quantum phase transition from a fermion integer quantum Hall state to a boson fractional quantum Hall state as the pairing interaction strength increases, with the transition occurring near the resonance. The effective field theory for the transition is shown to be that of a (emergent) massless relativistic bosonic field coupled to a Chern-Simons gauge field, with the coupling giving rise to semionic statistics to the emergent particles.  相似文献   

15.
We study a single species of fermionic atoms in an "effective" magnetic field at total filling factor ν(f)=1, interacting through a p-wave Feshbach resonance, and show that the system undergoes a quantum phase transition from a ν(f)=1 fermionic integer quantum Hall state to ν(b)=1/4 bosonic fractional quantum Hall state as a function of detuning. The transition is in the (2+1)D Ising universality class. We formulate a dual theory in terms of quasiparticles interacting with a Z(2) gauge field and show that charge fractionalization follows from this topological quantum phase transition. Experimental consequences and possible tests of our theoretical predictions are discussed.  相似文献   

16.
We study the transition of a quantum system from a pure state to a mixed one, which is induced by the quantum criticality of the surrounding system E coupled to it. To characterize this transition quantitatively, we carefully examine the behavior of the Loschmidt echo (LE) of E modeled as an Ising model in a transverse field, which behaves as a measuring apparatus in quantum measurement. It is found that the quantum critical behavior of E strongly affects its capability of enhancing the decay of LE: near the critical value of the transverse field entailing the happening of quantum phase transition, the off-diagonal elements of the reduced density matrix describing S vanish sharply.  相似文献   

17.
杨阳  王安民 《中国物理 B》2014,23(2):20307-020307
We study the dynamics of correlations for a hybrid qubit-qutrit system in an XY spin-chain environment with Dzyaloshinsky-Moriya interaction. Our discussion involves a comparative analysis of negativity, quantum discord, and measurement-induced disturbance. It is found that the quantum discord is optimal of the three quantum correlations to de- tect the critical point of quantum phase transition. Only when the qubit interacts with the environment, is the phenomenon of sudden transition between the classical correlation and the quantum discord observed. Moreover, the Dzyaloshinsky- Moriya interaction enhances the decay of quantum correlations.  相似文献   

18.
Atoms trapped in micro-cavities and interacting through the exchange of virtual photons can be modeled as an anisotropic Heisenberg spin-1/2 lattice. We do the quantum field theoretical study of such a system using the Abelian bosonization method followed by the renormalization group analysis. An infinite order Berezinskii-Kosterliz-Thouless transition is replaced by second order XY transition even when an infinitesimal anisotropy in exchange coupling is introduced. We predict a quantum phase transition between the photonic Coulomb blocked induce Mott insulating and photonic superfluid phases due to detuning between the cavity and laser frequency. A large detuning favors the photonic superfluid phase. We also perform the analysis of Jaynes and Cumming Hamiltonian to support the results of quantum field theoretical study.  相似文献   

19.
We suggest a closed form expression for the path integral of quantum transition amplitudes. We introduce a quantum action with parameters different from the classical action. We present numerical results for the harmonic oscillator with weak perturbation, the quartic potential, and the double well potential. The quantum action is relevant for quantum chaos and quantum instantons.  相似文献   

20.
The charged Dirac oscillator on a noncommutative plane coupling to a uniform perpendicular magnetic field is studied in this paper. We map the noncommutative plane to a commutative one by means of Bopp shift and study this problem on the commutative plane. We find that this model can be mapped onto a quantum optics model which contains Anti-Jaynes-Cummings (AJC) or Jaynes-Cummings (JC) interactions when a dimensionless parameter ζ (which is the function of the intensity of the magnetic field) takes values in different regimes. Furthermore, this model behaves as experiencing a chirality quantum phase transition when the dimensionless parameter ζ approaches the critical point. Several evidences of the chirality quantum phase transition are presented. We also study the non-relativistic limit of this model and find that a similar chirality quantum phase transition takes place in its non-relativistic limit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号