首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
2.
The nonaxisymmetric acousto-electric field excited by an eccentric acoustic source in the borehole based on Pride seismoelectric theory is considered. It is shown that the acoustic field inside the borehole, converted electric and magnetic fields and coupled fields outside the borehole are composed of an infinitude of multipole fields with different orders. The numerical results show that both the electromagnetic waves and the seismoelectric field in the borehole, and the three components of both electric field and magnetic field can be detected. Measurements on the borehole axis will be of advantage to determining shear velocity information. The components of the symmetric and nonsymmetric acoustic and electromagnetic fields can be strengthened or weakened by adding or subtracting the two full waveforms logged in some azimuths. It may be a new method of directly measuring the shear wave velocity by using the borehole seismoelectric effect.  相似文献   

3.
Underwater acoustic (UWA) communication based on an acoustic vector sensor is studied. The method of joint weighted sound pressure and velocity processing is used in phase modulation high-speed UWA communication system combined with coherent demodulation and adaptive equalization algorithm to demodulate and decode. Whereas the sound intensity could be used instead of pressure for frequency decoding in frequency modulation UWA communication system. The results of theory analysis, simulation calculations and lake trials have shown that either in phase modulation or in frequency modulation UWA communication system, the processing gain can be evidently increased, so that the BER (bit error rate) can be effectively reduced and the telemetry distance can be enlarged by using the acoustic vector sensor.  相似文献   

4.
Spatiotemporal vector and phase properties of interference field of low-frequency signalling tone between three local vortices in a real shallow sea wave-guide have been studied.It has been demonstrated that in the field of constructive interference,components of particle velocity field and acoustic pressure are coherent.As a consequence the transfer of signal energy alog the axis of a shallow sea wave-guide is accomplished with plane wave.Physical objects are detected in the field of destructive interference,which,according to known deterministic signs,can be defined as local vortices of the intensity vector.A large-scale vorticity with acoustic intensity vector curl,components different from zero originates in the vicinity of local vortices.Regular particle displacements of local vortices have been detected against combined receiving device phase centre along the axis of a wave-guide.It has been demonstrated that the structure of vortices depends on signal/noise ratio.Local vortices and vorticity form vortex structure of vector acoustic field.Signalling tone with frequency of 88 ± 1 Hz from near-surface moving sound source was taken into consideration.Introduced results of full-scale experiment expand our concepts of real fundamental properties of shallow sea acoustic field and are to be considered in theoretical models.  相似文献   

5.
It has been realized that resonance frequencies of imperfect the transformation acoustics in R^2 are located near Dirichlet acoustic cloaking based on a small perturbation of eigenvalues of the cloaked region [Chin. Phys. Lett. 26 (2009) 014301; 29 (2012) 124301]. In this work, we study the performance of the three-dimensional approximate cloaking system based on the transformation acoustics and show that the cloaking effect may be deteriorated at zeroth order Neumann eigenvalues of the concealed region. In particular, transmitted fields into the concealed region can be extremely resonated at frequencies corresponding to the zeroth-order Neumann eigenvalues while scattered fields are suppressed well for any frequency. To enhance the cloaking effect at resonance frequencies, we introduce a lossy medium inside the cloaked region and show that the new proposal can reduce the intensity of transmitted fields significantly due to the lossy medium.  相似文献   

6.
An approximate method is brought forward to predict the acoustic pressure based on the surface velocity. It is named Element Radiation Superposition Method (ERSM). The study finds that each element in Acoustic Transfer Vector (ATV) equals the acoustic pressure radiated by the corresponding surface element vibrating in unit velocity and other surface elements keep still, that is the acoustic pressure radiated by the corresponding baffled piston vibrating in unit velocity. So, it utilizes the acoustic pressure radiated by a baffled piston to establish the transfer relationship between the surface velocity and the acoustic pressure. The total acoustic pressure is obtained through summing up the products of the surface velocity and the transfer quantity. It adopts the regular baffle to fit the actual baffle in order to calculate the acoustic pressure radiated by the baffled piston. This approximate method has larger advantage in calculating speed and memory space than Boundary Element Method. Numerical simulations show that this approximate method is reasonable and feasible.  相似文献   

7.
In order to reconstruct complicated temperature fields more accurately by acoustic CT,a reconstruction algorithm based on Markov radial basis function and Tikhonov regularization is proposed and named as MTR algorithm.With the algorithm,the acoustic velocity field in a medium is approximated by a liner combination of Markov radial basis functions,the acoustic travel-times over multi-paths and the Tikhonov regulation are used to reconstruct the acoustic velocity distribution,and then the temperature distribution is calculated by using the relationship between acoustic velocity and temperature.The temperature field models with one hot spot,three hot spots and five hot spots are reconstructed by using simulation data.Reconstruction results show that the MTR algorithm can reconstruct the hot temperature,especially the hot position accurately.An experiment system for temperature distribution measurement by acoustic CT is developed.The capability of acoustic CT to detect a hot spot created by electric heaters in an experimental silo filled with 1200 kg soybeans is tested by using the MTR algorithm.In the reconstruction temperature field,the hot position can be determined correctly and the temperature error of the hot spot is 1.3%.It is thus clear that the MTR algorithm has a good capacity of reconstructing complex temperature fields,and can be expected to be used in temperature monitoring for actual stored gains.  相似文献   

8.
Geoacoustic Inversion Based on a Vector Hydrophone Array   总被引:1,自引:0,他引:1       下载免费PDF全文
We propose a geoacoustic inversion scheme employing a vector hydrophone array based on the fact that vector hydrophone can provide more acoustic field information than traditional pressure hydrophones. Firstly, the transmission loss of particle velocities is discussed. Secondly, the sediment sound speed is acquired by a matchedfield processing (MFP) procedure, which is the optimization in combination of the pressure field and vertical particle velocity field. Finally, the bottom attenuation is estimated from the transmission loss difference between the vertical particle velocity and the pressure. The inversion method based on the vector hydrophone array mainly has two advantages: One is that the MFP method based on vector field can decrease the uncertain estimation of the sediment sound speed. The other is that the objective function based on the transmission loss difference has good sensitivity to the sediment attenuation and the inverted sediment attenuation is independent of source level. The validity of the inverted parameters is examined by comparison of the numerical results with the experimental data.  相似文献   

9.
The spatial coherences were investigated between the sound pressure and the three orthogonal components of the particle velocity in underwater ambient noise. Based on the ray theory, integral expression was derived for the spatial coherence matrix of the sound pressure and the particle velocity in a stratified ocean with dipole noise sources homogenously distributed on the surface. The integrand includes a multiplying factor of the vertical directivity of the noise intensity, and the layered ocean environment affects the spatial coherences via this directivity factor. For a shallow water environment and a semi-infinite homogenous medium, the coherence calculation results were given. It was showed that the sound speed profile and the sea bottom could not be neglected in determining the spatial coherences of the ambient noise vector field.  相似文献   

10.
董必春  张润梅  袁彬  俞传阳 《中国物理 B》2022,31(2):24303-024303
Nearfield acoustic holography in a moving medium is a technique which is typically suitable for sound sources identification in a flow.In the process of sound field reconstruction,sound pressure is usually used as the input,but it may contain considerable background noise due to the interactions between microphones and flow moving at a high velocity.To avoid this problem,particle velocity is an alternative input,which can be obtained by using laser Doppler velocimetry in a non-intrusive way.However,there is a singular problem in the conventional propagator relating the particle velocity to the pressure,and it could lead to significant errors or even false results.In view of this,in this paper,nonsingular propagators are deduced to realize accurate reconstruction in both cases that the hologram is parallel to and perpendicular to the flow direction.The advantages of the proposed method are analyzed,and simulations are conducted to verify the validation.The results show that the method can overcome the singular problem effectively,and the reconstruction errors are at a low level for different flow velocities,frequencies,and signal-to-noise ratios.  相似文献   

11.
矢量拖线阵水听器流噪声响应特性   总被引:1,自引:0,他引:1       下载免费PDF全文
时胜国  于树华  时洁  马根卯 《物理学报》2015,64(15):154306-154306
针对传统拖线阵流噪声理论的局限性, 建立了完善的矢量拖线阵流噪声理论分析方法, 可全面准确地揭示矢量拖线阵流噪声响应特性. 基于细长圆柱的湍流边界层压力起伏Carpenter模型, 采用波数-频率谱分析方法对矢量拖线阵流噪声响应特性进行了理论研究, 导出了圆柱形矢量水听器流噪声响应的声压和振速自功率谱及其互功率谱的解析表达式, 定量分析了流噪声响应功率谱与拖曳速度、水听器尺寸、套管尺寸和材料等参数之间变化规律; 另外, 还讨论了圆柱形矢量水听器偏离护套轴线时矢量拖线阵流噪声响应, 导出了流噪声响应的声压、径向和轴向振速自功率谱及其互功率谱的解析表达式, 数值计算结果表明: 轴线偏移距离对声压和轴向振速的高频噪声的影响要大于对低频噪声的影响, 而对径向振速的全频段噪声都有明显影响, 且对振速分量影响要远大于对声压影响.  相似文献   

12.
The properties of the scattered acoustic vector fields generated by simple spheres illuminated by monotonic continuous wave (CW) plane waves are investigated. Analytical solutions are derived from general acoustic pressure scattering models and analyzed for wave numbers in the resonance region. Of particular interest is the understanding of the characteristics of the scattered acoustic vector field in the near-to-far-field transition region. The separable active and reactive components of the acoustic intensity are used to investigate the structural features of the scattered field components. Numerical results are presented for the near and transition regions for a rigid sphere. A method of mapping nulls in the scattered intensity field components is described. The analysis is then extended to include a simple fluid-filled boundary and finally the evacuated thin-walled shell. Near field acoustic intensity field structures are compared against mechanical material properties of vacuous shells. The ability to extract scattered field features is illustrated with measurements obtained from a recent in-air experiment using an anechoic chamber and acoustic vector sensor probes to measure the scattered acoustic vector field from rigid spheres.  相似文献   

13.
汪勇  杨益新  何正耀  雷波  孙超  马远良 《中国物理 B》2016,25(12):124318-124318
An acoustic vector sensor can measure the components of particle velocity and the acoustic pressure at the same point simultaneously, which provides a larger array gain against the ambient noise and a higher angular resolution than the omnidirectional pressure sensor. This paper presents an experimental study of array gain for a conformal acoustic vector sensor array in a practical environment. First, the manifold vector is calculated using the real measured data so that the effects of array mismatches can be minimized. Second, an optimal beamformer with a specific spatial response on the basis of the stable directivity of the ambient noise is designed, which can effectively suppress the ambient noise.Experimental results show that this beamformer for the conformal acoustic vector sensor array provides good signal-tonoise ratio enhancement and is more advantageous than the delay-and-sum and minimum variance distortionless response beamformers.  相似文献   

14.
程彬彬  杨士莪 《应用声学》2006,25(4):234-239
矢量水听器由于能获取声场中标量(声压)和矢量(振速)信息,因此单个的矢量水听器就可实现目标方位估计。单个矢量水听器是利用信号的声压和质点振速之间相关性进行信号方位估计,但是当存在干扰,并且干扰和信号之间相关时,如果对运用能量流进行方位估计的方法不加改进,则会出现很大的误差,甚至出现错误的估计。本文提出一种存在已知噪声干扰情况下的干扰抵消方法,并针对该方法进行了仿真试验,最后运用湖试数据进行了验证。结果表明,该方法能有效地减弱相千千柑对信号的影响,实现对信号的方位估计。  相似文献   

15.
为了解决薄互储层的声测井问题,提出了声压-速度有限差分方法:用声压和速度矢量做为场变量,分别描述井内流体和井外弹性固体或双相介质。这样选择场变量的优点是:处理脉冲点源(或线源)与套网格技术相比简单得多;在内边界上的差分格式稳定,精度得到了改进;人为边界上的吸收效果较好。用柱坐标分别给出了井壁上流体与弹性固体、流体与双相介质的声压-速度边界条件,并用守恒积分方法处理了井壁上的边界条件。通过用声压-速度有限差分方法模拟弹性固体和双相介质地层的声场,证明了声压-速度有限差分方法的有效性。  相似文献   

16.
Bi-static sonar applications of intensity processing   总被引:1,自引:0,他引:1  
Acoustic intensity processing of signals from directional sonobuoy acoustic subsystems is used to enhance the detection of submerged bodies in bi-static sonar applications. In some directions, the scattered signals may be completely dominated by the incident blast from the source, depending upon the geometry, making the object undetectable by traditional pressure measurements. Previous theoretical derivations suggest that acoustic vector intensity sensors, and the associated intensity processing, are a potential solution to this problem. Deep water experiments conducted at Lake Pend Oreille in northern Idaho are described. A large, hollow cylindrical body is located between a source and a number of SSQ-53D sonobuoys positioned from 5 to 30 body lengths away from the scattering body. Measurements show changes in the acoustic pressure of less than 0.5 dB when the scattering body is inserted in the field. However, the phase of the acoustic intensity component formed between the acoustic pressure and particle velocity component orthogonal to the direction of incident wave propagation varies by as much as 55 degrees. This metric is shown to be a repeatable and strong indicator of the presence of the scattering body.  相似文献   

17.
基于声压-质点速度声强探头的材料吸声系数的测量   总被引:2,自引:1,他引:1       下载免费PDF全文
通过由一个声压换能器和一个质点速度换能器所构成的传感器(p-u声强探头)同时测量材料表面附近的声压和质点振动速度,可直接得到其声学阻抗,进而得到材料的反射因子、吸声系数。本文利用一个p-u探头声强测量系统,在半消声室内测量了三聚氰胺泡沫的吸声系数,分析了声源高度和入射角度、材料样本尺寸和厚度对吸声系数测量的影响,并和阻抗管中测量得到的法向吸声系数进行了对比。最后分析了声阻抗率的幅值和相位误差对吸声系数的影响,推导了它们的误差传递公式。  相似文献   

18.
An acoustic vector sensor provides measurements of both the pressure and particle velocity of a sound field in which it is placed. These measurements are vectorial in nature and can be used for the purpose of source localization. A straightforward approach towards determining the direction of arrival (DOA) utilizes the acoustic intensity vector, which is the product of pressure and particle velocity. The accuracy of an intensity vector based DOA estimator in the presence of noise has been analyzed previously. In this paper, the effects of reverberation upon the accuracy of such a DOA estimator are examined. It is shown that particular realizations of reverberation differ from an ideal isotropically diffuse field, and induce an estimation bias which is dependent upon the room impulse responses (RIRs). The limited knowledge available pertaining the RIRs is expressed statistically by employing the diffuse qualities of reverberation to extend Polack's statistical RIR model. Expressions for evaluating the typical bias magnitude as well as its probability distribution are derived.  相似文献   

19.
Propagation of power ultrasound (from 20 to 800 kHz) through a liquid inside a cylindrical reactor initiates acoustic cavitation and also fluid dynamics phenomena such as free surface deformation, convection, acoustic streaming, etc. Mathematical modelling is performed as a new approach to predict where active bubbles are and how intense cavitation is. A calculation based on fluid dynamics equations is undertaken using computational fluid dynamics code; this is of great interest because such code provides not only the pressure field but also velocity and temperature fields. The link between the acoustic pressure and the cavitation field is clearly established. Moreover, the pressure profile near a free surface allows one to predict the shape of the acoustic fountain. The influence of the acoustic fountain on the wave propagation is shown to be important. The convective flow inside a reactor is numerically obtained and agrees well with particle image velocity measurements. Non-linearities arising from the dissipation of the acoustic wave are computed and lead to the calculation of the acoustic streaming. The superimposed velocity field (convective flow and acoustic streaming) succeeds in simulating the bubble behaviour at 500 kHz, for instance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号