首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A few‐cycle, broadband, singly‐resonant optical parametric oscillator (OPO) for the mid‐infrared based on MgO‐doped periodically‐poled LiNbO3 (MgO:PPLN), synchronously pumped by a 20‐fs Ti:sapphire laser is reported. By using crystal interaction lengths as short as 250 µm, and careful dispersion management of input pump pulses and the OPO resonator, near‐transform‐limited, few‐cycle idler pulses tunable across the mid‐infrared have been generated, with as few as 3.7 optical cycles at 2682 nm. The OPO can be continuously tuned over 2179‐3732 nm (4589‐2680 cm‐1) by cavity delay tuning, providing up to 33 mW of output power at 3723 nm. The idler spectra exhibit stable broadband profiles with bandwidths spanning over 422 nm (FWHM) recorded at 3732 nm. The effect of crystal length on spectral bandwidth and pulse duration is investigated at a fixed wavelength, confirming near‐transform‐limited idler pulses for all grating interaction lengths. By locking the repetition frequency of the pump laser to a radio‐frequency reference, and without active stabilization of the OPO cavity length, an idler power stability better than 1.6% rms over >2.75 hours is obtained when operating at maximum output power, in excellent spatial beam quality with TEM00 mode profile. Photograph shows a multigrating MgO:PPLN crystal used as a nonlinear gain medium in the few‐cycle femtosecond mid‐IR OPO. The visible light is the result of non‐phase‐matched sum‐frequency mixing between the interacting beams.  相似文献   

2.
Hang-Hang Yu 《中国物理 B》2022,31(12):124203-124203
We report a compact, efficient optical parametric oscillator (OPO) based on a periodically poled potassium titanyl phosphate (PPKTP) crystal pumped by a 532 nm laser, which generated 1.51 W of average power at the signal wavelength of 709 nm with the pulse duration of ~ 1.0 ns. The extraction efficiency was up to 59%. To the best of our knowledge, this is the first report on Watt-level green-pumped PPKTP-based singly resonant oscillator OPO (SRO-OPO). The precise build-up time of OPO was determined to be 1.6 ns benefitting from the characteristic of twin-peak pulse profile of pump beam. The spectrum width of the idler was also measured to be 4.2 nm with the central wavelength of 2134 nm at 0.2 nm spectral resolution of optical spectrum analyzer. In addition, the beam quality of M2 < 1.9 of generated signal exhibits a good consistency with M2 < 1.5 for the pump source.  相似文献   

3.
We generated 1 mW of average output power at 2.8 THz (bandwidth of approximately 300 GHz) in a diffraction-limited beam by placing a 6-mm-long quasi-phase-matched GaAs crystal inside the cavity of a synchronously pumped optical parametric oscillator (OPO). The OPO used type-II-phase-matched periodically poled lithium niobate as a gain medium and was pumped by a mode-locked laser at 1064 nm, with a 7 ps pulse duration, 50 MHz repetition rate, and 10 W average output power. The terahertz radiation was generated by difference frequency mixing between the signal and idler waves of the near-degenerate doubly resonant OPO.  相似文献   

4.
We demonstrated experimentally a synchronously pumped intracavity frequency-doubled femtosecond optical parametric oscillator (OPO) using a periodically-poled lithium niobate (PPLN) as the nonlinear material in combination with a lithium triborate (LBO) as the doubling crystal. A Kerr-lens-mode-locked (KLM) Ti:sapphire oscillator at the wavelength of 790 nm was used as the pump source, which was capable of generating pulses with a duration as short as 117 fs. A tunable femtosecond laser covering the 624-672 nm range was realized by conveniently adjusting the OPO cavity length. A maximum average output power of 260 mW in the visible range was obtained at the pump power of 2.2 W, with a typical pulse duration of 205 fs assuming a sech2 pulse profile.  相似文献   

5.
报道了一个低阈值宽调谐、被动调Q、单谐振掺MgO的周期性极化铌酸锂晶体(PPMgLN)光学参量振荡器。利用被动调Q的Nd:YVO4激光器作为泵浦源,采用外腔结构,在室温下,实现了PPMgLN晶体的准相位匹配光学参量振荡。光参量振荡的阈值仅为0.27W(单脉冲能量4.5μJ、脉宽35ns);在泵浦光为1.35W(脉冲能量8.2μJ、脉宽35ns),PPMgLN周期为31μm时,获得了161.9mW,3.202μm脉冲激光输出;同时获得了98.5mW的1.594μm信号光输出,总的光光转化效率达到19.3%。通过改变晶体的周期,实现了闲频光3.13~4.19μm,信号光1.43~1.65μm的宽带可调谐激光输出。  相似文献   

6.
We report a femtosecond optical parametric oscillator based on MgO-doped PPLN synchronously pumped by a mode-locked Ti:sapphire laser. The wavelengths of the signal and idler are continuously tuned from 1100 to 1300hm and from 2080 to 2930nm, respectively, by changing the pump wavelength and the OPO cavity length. The maximum signal output power of 130mW at the wavelength of 1225nm is obtained, pumped by 900roW of 800hm laser radiation. This corresponds to a total conversion efficiency of 22.1%. The signal pulse duration is measured to be 167fs by intensity autocorrelation with chirped mirrors for intracavity dispersion compensation.  相似文献   

7.
The paper reports on an experimental investigation and numerical analysis of noncritically and critically phasematched LiB3O5 (LBO) optical parametric oscillators (OPOs) synchronously pumped by the third harmonic of a cw diode-pumped mode-locked Nd:YVO4 oscillator–amplifier system. The laser system generates 9.0 W of 355-nm mode-locked radiation with a pulse duration of 7.5 ps and a repetition rate of 84 MHz. The LBO OPO, synchronously pumped by the 355-nm pulses, generates a signal wave tunable in the blue spectral range 457–479 nm. With a power of up to 5.0 W at 462 nm and 1.7 W at 1535 nm the conversion efficiency is 74%. The OPO is characterized experimentally by measuring the output power (and its dependence on the pump power, the transmission of the output coupler and the resonator length) and the pulse properties (such as pulse duration and spectral width). Also the beam quality of the resonant and nonresonant waves is investigated. The measured results are compared with the predictions of a numerical analysis for Gaussian laser and OPO beams. In addition to the blue-signal output visible-red 629-nm radiation is generated by sum-frequency mixing of the 1.535-μm infrared idler wave with the residual 1.064-μm laser radiation. A power of 1.25 W of 1.535-μm idler radiation and 5.7 W of 1.064-μm laser light generated a red 629-nm output power of 2.25 W. Received: 2 February 2000 / Revised version: 28 July 2000 / Published online: 22 November 2000  相似文献   

8.
田文龙  王兆华  朱江峰  魏志义 《中国物理 B》2016,25(1):14207-014207
We demonstrate a widely tunable near-infrared source from 767 nm to 874 nm generated by the intracavity second harmonic generation(SHG) in an optical parametric oscillator pumped by a Yb:LYSO solid-state laser. The home-made Yb:LYSO oscillator centered at 1035 nm delivers an average power of 2 W and a pulse duration as short as 351 fs. Two Mg O doped periodically poled lithium niobates(Mg O:PPLN) with grating periods of 28.5–31.5 μm in steps of 0.5 μm and19.5–21.3 μm in steps of 0.2 μm are used for the OPO and intracavity SHG, respectively. The maximum average output power of 180 m W at 798 nm was obtained and the output pulses have pulse duration of 313 fs at 792 nm if a sech2-pulse shape was assumed. In addition, tunable signal femtosecond pulses from 1428 nm to 1763 nm are also realized with the maximum average power of 355 m W at 1628 nm.  相似文献   

9.
张丽梦  胡明列  顾澄琳  范锦涛  王清月 《物理学报》2014,63(5):54205-054205
本文利用高重复频率,高平均功率大模场面积飞秒光纤激光器作为同步抽运源,抽运以多周期极化掺氧化镁铌酸锂为非线性晶体的单共振光学参量振荡器,获得了高功率可调谐红光至中红外光,信号光调谐范围为1450—2200 nm,闲频光调谐范围为2250—4000 nm,在2 W的抽运功率下,信号光输出波长为1502 nm时获得最大输出功率374 mW,转换效率为18.7%,脉冲宽度为144 fs,此时中红外输出中心波长为3.4μm,平均功率为166 mW.再利用BBO晶体对信号光进行腔内和频,获得和频光输出波长调谐范围为610—668 nm,在4.1 W抽运的情况下,最高平均功率为615 nm处的694 mW,转换效率达16.9%.  相似文献   

10.
We report on an optical parametric oscillator (OPO) that is synchronously pumped directly by a diode laser. This laser is an actively mode-locked master-oscillator power-amplifier system that produces 20-ps pulses at 927 nm with a repetition rate of 2.5 GHz and an average power of 0.9 W. The OPO, which is a singly resonant device based on periodically poled lithium niobate, generates 7.8-ps pulses. The OPO threshold is 300 mW of average pump power, and the maximum average idler output power is 78 mW at a wavelength of 2100 nm. By changing the crystal temperature we can wavelength tune the output in the ranges 1530-1737 nm (signal) and 1986-2348 nm (idler). Rapid wavelength tuning of the OPO over 46 nm (signal) and 74 nm (idler) is achieved through tuning the cavity length over 28 microm by use of a piezoelectric transducer.  相似文献   

11.
A synchronously pumped femtosecond optical parametric oscillator based on congruent MgO-doped periodically poled lithium niobate (c-MgO:PPLN) is reported. The system, operating at room temperature, was pumped by a mode-locked Ti:sapphire laser. The wavelengths of the signal and idler waves were tuned from 870 nm to 1.54 μm and 1.58 to 5.67 μm, respectively, by changing the pump wavelength, the grating period or the cavity length. Pumped by 1.1 W of 755 nm laser radiation, the OPO generated 310 mW of 1080 nm radiation. This signal output corresponds to a total conversion efficiency of 50%. Without dispersion compensation the OPO generated phase-modulated signal pulses of 200 fs duration. Besides the OPO of c-MgO:PPLN, an OPO of stoichiometric (s) MgO:PPLN was investigated. Because of the reduced sensitivity to photorefractive damage, both crystals allowed efficient OPO operation at room temperature. Received: 19 August 2002 / Revised version: 11 December 2002 / Published online: 19 March 2003 RID="*" ID="*"Corresponding author. Fax: +49-631/205-3906, E-mail: andres@physik.uni-kl.de  相似文献   

12.
We report on rapid, all-electronically controlled wavelength tuning of a continuous-wave (cw) optical parametric oscillator (OPO) pumped by an ytterbium fiber laser. The OPO is singly resonant for the signal wave and consists of a 40-mm-long periodically poled lithium niobate crystal in a four-mirror ring cavity. By tuning of the fiber-laser wavelength over 33 nm through an intracavity acousto-optic tunable filter, the OPO idler wavelength is tuned from 3160 to 3500 nm in 330 micros, corresponding to an idler frequency-tuning speed of 28 THz/ms. At a fiber-laser power of 6.6 W at 1074 nm, the singly resonant OPO generates 1.13-W cw idler radiation at 3200 nm.  相似文献   

13.
We report on what is to our knowledge the first optical parametric oscillator (OPO) pumped by microsecond pulses from a wavelength-tunable solid-state laser. The singly resonant OPO (SRO) is based on a periodically poled LiNbO3 crystal and pumped with 2.1-micros-long pulses from an actively Q-switched Yb fiber laser. At an average fiber laser power of 3.6 W, the SRO generates 1.9-micros-long pulses with a repetition rate of 25 kHz and an average power of 560 mW at 3360 nm. The SRO was tuned from 1518 to 1634 nm (signal) and from 3145 to 3689 nm (idler) via the crystal temperature and poling period. By all-electronic tuning of the fiber laser wavelength over 19 nm, tuning of the mid-infrared idler wavelength over 195 nm was achieved.  相似文献   

14.
A LiNbO(3) optical parametric oscillator (OPO) pumped at 930nm shows a wide phase-matching curve. Each pulse produced by the OPO has a very broad natural linewidth, from 1480 to 1800 nm for the signal and from 1950 to 2550 nm for the idler. The emission wavelength is controlled thanks to an electrically tunable Fabry-Perot interferometer inserted into the OPO cavity. The signal wavelength is electrically tuned in the range 1450-1850nm without crystal rotation.  相似文献   

15.
We report a high-power picosecond optical parametric oscillator (OPO) synchronously pumped by a Yb fiber laser at 1.064 μm, providing 11.7 W of total average power in the near to mid-IR at 73% extraction efficiency. The OPO, based on a 50 mm MgO:PPLN crystal, is pumped by 20.8 ps pulses at 81.1 MHz and can simultaneously deliver 7.1 W of signal at 1.56 μm and 4.6 W of idler at 3.33 μm for 16 W of pump power. The oscillator has a threshold of 740 mW, with maximum signal power of 7.4 W at 1.47 μm and idler power of 4.9 W at 3.08 μm at slope efficiencies of 51% and 31%, respectively. Wavelength coverage across 1.43-1.63 μm (signal) and 4.16-3.06 μm (idler) is obtained, with a total power of ~11 W and an extraction efficiency of ~68%, with pump depletion of ~78% maintained over most of the tuning range. The signal and idler output have a single-mode spatial profile and a peak-to-peak power stability of ±1.8% and ±2.9% over 1 h at the highest power, respectively. A signal pulse duration of 17.3 ps with a clean single-peak spectrum results in a time-bandwidth product of ~1.72, more than four times below the input pump pulses.  相似文献   

16.
We demonstrate a harmonically pumped femtosecond optical parametric oscillator(OPO)laser using a frequency-doubled mode-locked Yb:KGW laser at a repetition rate of 75.5 MHz as the pump laser.Based on a bismuth borate nonlinear crystal,repetition rates up to 1.13 GHz are realized,which is 15 times that of the pump laser.The signal wavelength is tunable from 700 nm to 887 nm.The maximum power of the signal is 207 m W at the central wavelength of 750 nm and the shortest pulse duration is 117 fs at 780 nm.The beam quality(M^2 factor)in the horizontal and vertical directions of the output beam are 1.077 and 1.141,respectively.  相似文献   

17.
A self‐phase‐locked degenerate femtosecond optical parametric oscillator (OPO) based on the birefringent nonlinear material, bismuth triborate, BiB3O6, synchronously‐pumped by a Kerr‐lens‐mode‐locked Ti:sapphire laser at 800 nm is described. By exploiting versatile phase‐matching properties of BiB3O6, including large spectral and angular acceptance for parametric generation and low group velocity dispersion in the optical xz plane, stable self‐phase‐locked degenerate OPO operation centered at 1600 nm is demonstrated using collinear type I (eoo) interaction in a 1.5‐mm crystal at room temperature. The degenerate OPO output spectrum extends over 46 nm (∼5.4 THz) with 190 fs pulse duration for input pump pulses of 155 fs with a bandwidth of 7 nm. Phase coherence between the pump and degenerate output is verified using f‐2f interferometry, and discrete frequency beats caused by different carrier‐envelope‐offset frequencies are measured using radio frequency measurements. Photo shows a 1.5‐mm BiB3O6 crystal used as a nonlinear gain medium in a degenerate self‐phase‐locked femtosecond OPO operating at room temperature. The green beam is the result of non‐phase‐matched sum‐frequency mixing between the pump light and the sub‐harmonic OPO field at degeneracy.  相似文献   

18.
4 (KTA) optical parametric oscillator (OPO) synchronously pumped by a cw diode-pumped mode-locked Nd:YVO4 oscillator–amplifier system. The laser system (pumped by 84 W of cw 808-nm diode radiation) generates 7-ps-long pulses at 1.064 μm with a repetition rate of 83.4 MHz and an average power of 29 W. The OPO, synchronously pumped by the 1.064-μm laser pulses, consists of a 15-mm-long KTA crystal (cut for type II noncritical phase-matching) in a folded signal resonant linear resonator. The average powers of the 1.54-μm signal radiation and the 3.47-μm idler radiation are 14.6 W and 6.4 W, respectively. The total OPO output of 21 W corresponds to an internal efficiency of 75%. The experimental investigations include measurements of the OPO output power (and its dependence on the pump power, the transmission of the output coupler, and the resonator length) and of the pulse properties (such as pulse duration and spectral width). The measured results are in good agreement with the predictions of a numerical analysis based on a split-step Fourier method. Received: 4 May 1998  相似文献   

19.
搭建了Nd:YVO4/SESAM锁模激光器,采用LDA泵浦的Innoslab对其进行功率放大,最后同步泵浦MgO:PPLN实现了宽调谐皮秒中红外光参量运转。通过改变MgO:PPLN的温度和通道,实现了信号光1415~1557 nm、闲频光3362~4290 nm范围的宽调谐输出,其中最高的光光转换效率为17.5%。同步泵浦功率为16 W,脉冲重复频率为116.9 MHz时,同时获得1.33 W的1518 nm信号光和1.26 W的3558 nm闲频光输出。  相似文献   

20.
A single resonator 8.30 μm ZnGeP2 (ZGP) optical parametric oscillators (OPO) was reported in the paper. The OPO was pumped by a 10.2-W Tm,Ho:GdVO4 laser at 8 kHz in a Q-switch mode, a 170-mW idler was obtained at 8.30 μm, and the output power of the idler and signal wave was 1.0 W, corresponding to an optical-optical conversion efficiency of 10.3% and a slope efficiency of 20.9%. Tm,Ho:GdVO4 laser was pumped by a 30-W fiber-coupled laser diode (LD) at the center wavelength of 801 nm. The output wavelength of Tm,Ho:GdVO4 laser was at 2.05 μm, and the energy per pulse of 1.28 mJ in 18 ns was achieved at 8 kHz with the peak power of 71.1 kW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号