首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
数字全息干涉术用于微波等离子体推进器羽流场的研究   总被引:7,自引:7,他引:0  
冯伟  李恩普  范琦  张琳  赵建林 《光子学报》2005,34(12):1833-1836
利用数字全息干涉术研究了微波等离子体推进器羽流场的分布特征,由所记录的羽流场的数字全息图,经数值再现,得到了羽流场的相位分布,进而计算出等离子体羽流场的电子数密度.通过相位倍增法增加了羽流场的干涉条纹密度,从而能够更直观地反映出羽流场的折射率分布.结果表明,数字全息干涉术是研究微波等离子体推进器羽流场的一种有效方法.  相似文献   

2.
We investigated the subpicosecond laser ablation of copper and fused silica under 100 fs laser irradiation at 800 nm in vacuum by means of fast plume imaging and time- and space-resolved optical emission spectroscopy. We found that, to the difference of copper ablation, the laser-generated plasma from a fused silica target exhibited one “main” component only. The “slow” plasma component, observed during copper ablation and usually assigned to optical emission from nanoparticles was not detected by either plasma fast imaging or optical emission spectroscopy even when fused silica targets were submitted to the highest incident fluences used in our experiments. The characteristic expansion velocity of this unique component was about three times larger than the velocity of the fast plume component observed during copper ablation. The dependence of laser fluence on both plasma expansion and ablation rate was investigated and discussed in terms of ablation efficiency and initiation mechanisms.  相似文献   

3.
The dynamic behaviors and optical properties of a ZnO plasma plume produced by pulsed laser ablation using a Nd:YAG laser (wavelength: 532 nm, pulse width: 3 ns) were studied by fast photography using a commercial gated charge coupled device (CCD) camera linked with a delay circuit and by optical emission spectroscopy at various ambient oxygen pressures. Fast photography was conducted with a resolving power of 0.25 μs and the expansion behaviors of the laser ablation plume were observed. Plasma plume expansion velocity decreased with oxygen partial pressure. The flow of the plasma plume in the early stage of expansion of up to 3 ms agreed well with the drag model.  相似文献   

4.
We report an experimental analysis of the plasma plume produced during ultrafast laser ablation of a copper target, in high vacuum. The plasma plume optical emission is studied by using a hybrid time-gated imaging technique which allows obtaining simultaneous information on the spectral and spatial characteristics of the emitting species. We used both single and double pulse ablation scheme, observing their influence on the characteristics of the ablated atomic species.  相似文献   

5.
This paper describes some recent results on femtosecond laser ablation of gold. We have studied both the fast vapour/plasma and slow nanoparticle plumes using Langmuir probe, time-resolved ICCD imaging and time-resolved optical absorption measurements. The nanoparticle plume dynamics was analysed by comparing the optical emission absorption measurements with an adiabatic isentropic model of ablation plume expansion, leading to an estimate of the amount of material in the nanoparticle plume.  相似文献   

6.
Laser ablation of Mn target in vacuum and in the presence of CH4 was studied under 308 nm laser irradiation. Time-resolved emission using gated detection and scanning monochromator and absorption using the cavity ring-down spectroscopy were used to study vaporized plume. In the CH4 atmosphere we observed transitions identified as C2 and MnH bands, while these spectral features were not detected in emission spectra. This is a clear evidence of importance in combining both spectroscopic techniques in laser vaporized plume study.  相似文献   

7.
利用时间分辨的光谱测量技术,测定了不同氪气压强下脉冲激光烧蚀金属Cu诱导等离子体发光羽的发射光谱及其强度随时间的分布。利用快速同步照相的方法,拍摄了不同氪气压强下的等离子体发光羽的照片。实验结果表明,等离子体发光羽的光谱主要由原子谱线构成,发光羽颜色随环境气压而变化。结合实验结果探讨了环境气压对脉冲激光烧蚀Cu诱导等离子体发光羽的发光机理的影响,认为不同环境气压下等离子体发光羽的发光机理不同,低压下以电子碰撞传能激发辐射为主,中压下以电子与原子碰撞传能激发和电子与一价离子的复合激发辐射为主,高压下以电子与一价离子的复合激发辐射为主,并用此机理定性地解释了所观察到的实验现象。  相似文献   

8.
A study of VIS laser ablation of graphite, in vacuum, by using 3 ns Nd:YAG laser radiation is reported. Nanosecond pulsed ablation gives an emission mass spectrum attributable to Cn neutral and charged particles. Mass quadrupole spectroscopy, associated to electrostatic ion deflection, allows estimation of the velocity distributions of several of these emitting species within the plume as a function of the incident laser fluence. Time gated plume imaging and microscopy measurements have been used to study the plasma composition and the deposition of thin carbon films. The multi-component structure of the plume emission is rationalized in terms of charge state, ions temperature and neutrals temperature. A special regard is given to the ion acceleration process occurring inside the plasma due to the high electrical field generated in the non-equilibrium plasma conditions. The use of nanosecond laser pulses, at fluences below 10 J/cm2, produces interesting C-atomic emission effects, as a high ablation yield, a high fractional ionization of the plasma and presence of nanostructures deposited on near substrates.  相似文献   

9.
Debarati Bhattacharya 《Pramana》2000,55(5-6):823-833
Emission plasma plume generated by pulsed laser ablation of a lithium solid target by a ruby laser (694 nm, 20 ns, 3 J) was subjected to optical emission spectroscopy: time and space resolved optical emission was characterised as a function of distance from the target surface. Propagation of the plume was studied through ambient background of argon gas. Spectroscopic observations can, in general, be used to analyse plume structure with respect to an appropriate theoretical plasma model. The plume expansion dynamics in this case could be explained through a shock wave propagation model wherein, the experimental observations made were seen to fit well with the theoretical predictions. Spectral information derived from measurement of peak intensity and line width determined the parameters, electron temperature (T e) and electron number density (n e), typically used to characterise laser produced plasma plume emission. These measurements were also used to validate the assumptions underlying the local thermodynamic equilibrium (LTE) model, invoked for the high density laser plasma under study. Some interesting results pertaining to the analysis of plume structure and spatio-temporal behaviour of T e and n e along the plume length will be presented and discussed.  相似文献   

10.
Nanostructured CdS and ZnS films on Si (100) substrates were obtained by nanosecond pulsed laser deposition at the wavelengths of 266 and 532 nm. The effect of laser irradiation wavelength on the surface structure and crystallinity of deposits was characterized, together with the composition, expansion dynamics and thermodynamic parameters of the ablation plume. Deposits were analyzed by environmental scanning electron microscopy, atomic force microscopy and X-ray diffraction, while in situ monitoring of the plume was carried out with spectral, temporal and spatial resolution by optical emission spectroscopy. The deposits consist of 25–50 nm nanoparticle assembled films but ablation in the visible results in larger aggregates (150 nm) over imposed on the film surface. The aggregate free films grown at 266 nm on heated substrates are thicker than those grown at room temperature and in the former case they reveal a crystalline structure congruent with that of the initial target material. The observed trends are discussed in reference to the light absorption step, the plasma composition and the nucleation processes occurring on the substrate.  相似文献   

11.
黄庆举 《发光学报》2006,27(6):1021-1025
采用时间与空间分辨的光谱测量技术,测量了在低真空下XeCl紫外激光烧蚀金属Cu诱导产生等离子体发光羽的发射光谱随时间和空间的强度分布,利用快速同步照相的方法获得了发光羽的相片,结果发现发光羽的不同区域有不同的颜色特征。根据实验结果建立了非常可能的激光烧蚀诱导发光的理论模型,认为不同区域的主要发光机理不同,连续辐射背景光来自近靶处高能电子的运动而产生的轫致辐射;原子线的产生来自电子碰撞传能以及电子与离子的复合激发;离子线的产生来自电子与离子碰撞传能激发。此模型不仅能解释单一激发模型所能解释的实验现象,而且还能够很好地解释单一模型所不能解释的实验现象,低真空下紫外激光烧蚀铜诱导发光的机理与常压下相似,在此实验条件下可以更准确地揭示诱导发光的机理。  相似文献   

12.
The ablation process induced by excimer lasers is a collective phenomenon that basically involves two phenomena: the laser radiation–matter interaction and the dynamic of the ablation plume. The laser parameters, the thermal and optical properties of the material, and the surface morphology are critical factors in the ablation mechanisms affecting the direction of the ablation plume expansion. In this study, the role of the surface roughness and the evolution of its morphology under the laser irradiation were investigated. Assuming a thermal ablation model, a theoretical study of the initial steps of the laser ablation process by a finite element method using ANSYS (6.1) was performed. Different ablation experiments were carried out on silicon and copper targets using a XeCl laser. The target surface morphology changes were observed by SEM and the plume deflection was recorded by a digital camera. An acceptable agreement between the experimental and simulated results was found. This study contributes to a better understanding of the physical processes involved in the laser ablation and the relations between the plume deflection angle and the surface roughness. PACS 79.20.Ds; 81.40.Gh; 44.05.+e  相似文献   

13.
Optical emission lines from the plasma generated by a laser ablation process have been investigated to gather information on the nature of the chemical species present. In particular, the experiments were carried out during the laser ablation of a ceramic sintered SiC target, both in vacuum and in presence of controlled nitrogen atmosphere. Time integrated and spatially resolved emission spectra are dominated by the atomic emission lines from silicon and carbon species, either neutral, or singly ionized. When the ablation process was carried out in a nitrogen gas background direct evidence of the formation of the CN molecular specie was found. Fast photography imaging of the expanding plume revealed the formation of a shock wave at nitrogen pressure above 13.3 Pa, with the consequent heating of the shocked region and enhancement of the kinetics of ionization and excitation. Since the C2 specie was absent, a CN formation mechanism involving atomic carbon and nitrogen in the presence of a shock wave is suggested. PACS 52.38.Mf; 52.50.Jm, 47.40.-x  相似文献   

14.
Taking the calculation results based on the established two-dimensional ablation model of the intense-pulsed-ionbeam (IPIB) irradiation process as initial conditions, we build a two-dimensional hydrodynamic ejection model of plasma produced by an IPIB-irradiated metal titanium target into ambient gas. We obtain the conclusions that shock waves generate when the background pressure is around 133 mTorr and also obtain the plume splitting phenomenon that has been observed in the experiments.  相似文献   

15.
Pulsed digital holographic interferometry has been used to compare the laser ablation process of a Q-switched Nd-YAG laser pulse (wavelength 1064 nm, pulse duration 12 ns) on two different metals (Zn and Ti) under atmospheric air pressure. Digital holograms were recorded for different time delays using collimated laser light (532 nm) passed through the volume along the target. Numerical data of the integrated refractive index field were calculated and presented as phase maps. Intensity maps were calculated from the recorded digital holograms and are used to calculate the attenuation of the probing laser beam by the ablated plume. The different structures of the plume, namely streaks normal to the surface for Zn in contrast to absorbing regions for Ti, indicates that different mechanisms of laser ablation could happen for different metals for the same laser settings and surrounding gas. At a laser fluence of 5 J/cm2, phase explosion appears to be the ablation mechanism in case of Zn, while for Ti normal vaporization seems to be the dominant mechanism.  相似文献   

16.
In this work we report on the properties of the ablation plume and the characteristics of the films produced by ultra-fast pulsed laser deposition (PLD) of TiO2 in vacuum. Ablation was induced by using pulses with a duration of ≈300 fs at 527 nm. We discuss both the composition and the expansion dynamics of the TiO2 plasma plume, measured by exploiting time- and space-resolved emission spectroscopy and gated imaging. The properties of the TiO2 nanoparticles and nanoparticle-assembled films were characterized using different techniques, i.e. environmental scanning electron microscopy (ESEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). It is suggested that most of the material decomposes in the form of nanoparticles.  相似文献   

17.
基于激光诱导击穿光谱和X射线能谱技术,测量了激光与油漆作用时发射光谱及作用前后元素成分的变化,以此研究了激光除漆的机理。实验测量了不同纳秒激光能量下激光诱导击穿油漆表面的光谱,计算了等离子体的电子密度和温度。通过扫描电子显微镜对油漆烧蚀形貌进行了分析,采用X射线能谱仪测量了烧蚀前后油漆成分的变化。研究结果表明,等离子体电子密度、温度以及烧蚀区域大小都随着入射激光能量的增加逐渐增加。在激光作用前后油漆中碳(C)含量明显降低,原子百分比从78.25%降低到67.07%,说明激光与油漆作用过程中发生了烧蚀。通过对比钛(Ti)元素、C元素和铝(Al)元素的相对原子比例,表明更高的激光能量下油漆烧蚀的更剧烈。该工作对深入研究激光除漆机理有重要意义。  相似文献   

18.
脉冲激光诱导Cu靶产生发光羽的特性分析   总被引:1,自引:1,他引:0  
黄庆举 《光子学报》2006,35(11):1636-1639
通过在不同的环境气压下拍摄脉冲激光烧蚀金属Cu诱导产生的发光羽,获取了不同区域具有不同颜色特征的发光羽照片.结果发现:发光羽的颜色随环境气压的改变而变化.采用空间分辨光谱技术,测定了激光诱导金属Cu靶产生发光羽辐射强度的空间分布,以及不同烧蚀环境气压对发光羽辐射强度的影响.研究了脉冲激光烧蚀Cu表面诱导发光的动力学过程,建立了可能的发光羽分区模型,对发光羽的不同区域发光粒子的激发机理进行了探讨,并用之定性地解释了所观察的实验现象.结果分析表明:脉冲激光诱导Cu产生的发光羽可以分为三个区域,不同区域的发光机理不同,Cu原子和Cu离子的激发机理不完全相同.  相似文献   

19.
Laser Induced Breakdown Spectroscopy (LIBS) can be considered as a prominent technology for compositional analysis of materials in low-pressure space applications. In space applications, usually LIBS is conducted in a low-pressure environment and proper understanding of the plasma parameters is significant for any improvement in the system. A model is developed to describe the heating and subsequent melting, vaporization and ionization of a target material during LIBS process. A numerical model based on one-dimensional thermal conductivity equation is being used to simulate the target evaporation and a hydrodynamic model is used to simulate plume expansion. Further, an experimental approach of measuring spectral emission from the ablation plume using emission spectroscopy and estimating the plasma state, such as the ionization species, and average plasma temperature, is investigated. An important result of this work is that for different ambient conditions, laser ablation plume dynamics can be estimated.  相似文献   

20.
In this work, we investigated a carbon plasma plume produced by laser ablation of a graphite target in a nitrogen gas environment. The spatial distributions of C and N atoms were measured by time-resolved absorption spectroscopy. The spatial distributions of the relative densities of CN radicals, C2, and C3 molecules were measured using time-resolved emission spectroscopy. We determined that nitrogen gas produced an increase in carbon atom and molecule densities in the ablation plume. It was observed that the addition of RF plasma to the plume increased the CN radicals and C atom densities, and decreased the C2 and C3 molecule densities. The RF plasma changed the evolution of various fractional species of C, N, CN, C2, and C3 in the ablation plume. The chemical reactions with and without RF plasma were explained using the evolution and density of the fractional species of C, N, CN, C2, and C3in the plume. PACS 52.38.Mf; 42.62.Fi; 33.20.-t; 81.05.Uw  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号