首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Superhydrophobic cotton fabrics were prepared by the incorporation of silica nanoparticles and subsequent hydrophobization with hexadecyltrimethoxysilane (HDTMS). The silica nanoparticles were synthesized via sol-gel reaction with methyl trimethoxy silane (MTMS) as the precursor in the presence of the base catalyst and surfactant in aqueous solution. As for the resulting products, characterization by particle size analyzer, scanning electron microscopy (SEM), scanning probe microscopy (SPM), X-ray photoelectron spectroscopy (XPS), and thermal gravimetric analysis (TGA) were performed respectively. The size of SiO2 nanoparticles can be controlled by adjusting the catalyst and surfactant concentrations. The wettability of cotton textiles was evaluated by the water contact angle (WCA) and water shedding angle (WSA) measurements. The results showed that the treated cotton sample displayed remarkable water repellency with a WCA of 151.9° for a 5 μL water droplet and a WSA of 13° for a 15 μL water droplet.  相似文献   

2.
Sol-gel superhydrophobic coatings with improved hardness were prepared by embedding fumed silica nanoparticles in a partially condensed hybrid sol of methyltriethoxysilane (MTEOS) and colloidal silica. Fumed silica particles of size 25-30 nm were incorporated in the sol and the mixture was spray-coated on glass substrate. Water contact angle (WCA) of the composite coating increased with increase in silica content of the sol mixture. The concentration of silica in the sol mixture was optimized to obtain robust superhydrophobic coatings with a WCA of 162.5° and a pencil hardness of 5H. The wetting state of water droplet on the sol-gel composite coatings was analysed with both Wenzel and Cassie-Baxter models.  相似文献   

3.
The superhydrophobic polyphenylsilsesquioxane (PPSQ)/nanosilica composite coatings were prepared by spray coating method with nano fumed silica (NFS) particles embedded in PPSQ matrix. The water contact angle (WCA) increased from 92.9° to 152.5° and the sliding angle (SA) decreased from more than 60° to 3.9° as the NFS content increased. The superhydrophobicity retained up to 500 °C, sustained by the hierarchical micro-nano structures and excellent thermal stability of PPSQ. A superhydrophobic PPSQ coating with WCA of 152.6° and SA of 7.8° was obtained by solvent-nonsolvent method for comparison as well. However, it gradually lost superhydrophobicity at 200 °C because of the elimination of nanostructures by the thermal softening of PPSQ.  相似文献   

4.
Development of the anticorrosion coatings on metals having both passive matrix functionality and active response to changes in the aggressive environment has raised tremendous interest in material science. Using a sol-gel deposition method, superhydrophobic copper substrate could be obtained. The best hydrophobic coating sol was prepared with methyltriethoxysilane (MTES), methanol (MeOH), and water (as 7 M NH4OH) at a molar ratio of 1:19.1:4.31 respectively. The surface morphological study showed the ball like silica particles distributed on the copper substrate with particle sizes ranging from 8 to 12 μm. The coatings showed the static water contact angle as high as 155° and the water sliding angle as low as 7°. The superhydrophobic nature was maintained even though the deposited copper substrate was soaked for 100 h in 50% of HCl solution. The coatings are stable against humidity and showed superhydrophobic behavior even after 90 days of exposure. The coatings are mechanically stable and water drops maintained the spherical shape on the bent copper substrate, which was bent more than 90°.  相似文献   

5.
A novel ZnS hierarchical structure composed of nanorod arrays with branched nanosheets and nanowires grown on their upside walls, was synthesized over Au-coated silicon substrate via chemical vapor deposition technique. Contact angle and sliding angle of this hierarchical film with no surface modification were measured to be about 153.8° and 9.1° for 5 μl water droplets. Self-cleaning behavior and dynamic water-repelling performance were clearly demonstrated. In addition, electrowetting transition phenomenon from superhydrophobic to hydrophilic state happened when a critical bias ∼7.0 V was applied. Below this threshold voltage, the contact angle change is little. This work for the first time reports the creation of ZnS superhydrophobic surface and could enrich its research field as surface functional materials.  相似文献   

6.
Bi Xu 《Applied Surface Science》2008,254(18):5899-5904
A superhydrophobic ZnO nanorod array film on cotton substrate was fabricated via a wet chemical route and subsequent modification with a layer of n-dodecyltrimethoxysilane (DTMS). The as-obtained cotton sample was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), scanning probe microscope (SPM) and X-ray photoelectron spectroscopy (XPS), respectively. The wettability of the cotton fabric sample was also studied by contact angle measurements. The modified cotton fabrics exhibited superhydrophobicity with a contact angle of 161° for 8 μL water droplet and a roll-off angle of 9° for 40 μL water droplet. It was shown that the proper surface roughness and the lower surface energy both played important roles in creating the superhydrophobic surface, in which the Cassie state dominated.  相似文献   

7.
Herein, we report a facile and low cost method for the fabrication of superhydrophobic surface via spin coating the mixture of polydimethylsiloxane precursor (PDMS) and silicon dioxide (SiO2) nanoparticles. The surface hydrophobicity can be well tuned by adjusting the weight percent of PDMS and SiO2. The water contact angle (WCA) can increase from 106.8 ± 1.2° on PDMS film to 165.2 ± 2.3° on PDMS/SiO2 coating, companying with a change from adhering to rolling which was observed from tilting angle (TA) characterization. Multi-scale physical structures with SiO2 nanoparticle aggregates and networks of SiO2 nanoparticle aggregates are characterized by scanning electron microscopy (SEM) and atomic force microscope (AFM), and they can be observed more clearly from the AFM images treated with software (WSxM). Then the relationship between surface hydrophobicity and structures is further discussed based on Wenzel and Cassie models, indicating that the appearance of networks of nanoparticle aggregates is important in the Cassie state. The superhydrophobic coating can keep the superhydrophobicity at least for one month under environment conditions and readily regenerate after mechanical damage. Additionally, the superhydrophobic coating can be fabricated using other methods including dip coating, spray coating and casting. Thus, a large area of superhydrophobic coatings can be easily fabricated. Therefore the range of possible applications for these facile and versatile methods can be expanded to various actual conditions.  相似文献   

8.
Nanocrystalline ZnO thin films prepared by the sol-gel dip-coating technique were characterized by grazing incidence X-ray diffraction (GIXD), atomic force microscopy (AFM), X-ray reflectivity (XR) and grazing incidence small-angle X-ray scattering (GISAXS). The structures of several thin films subjected to (i) isochronous annealing at 350, 450 and 550 °C, and (ii) isothermal annealing at 450 °C during different time periods, were characterized. The studied thin films are composed of ZnO nanocrystals as revealed by analysing several GIXD patterns, from which their average sizes were determined. Thin film thickness and roughness were determined from quantitative analyses of AFM images and XR patterns. The analysis of XR patterns also yielded the average density of the studied films. Our GISAXS study indicates that the studied ZnO thin films contain nanopores with an ellipsoidal shape, and flattened along the direction normal to the substrate surface. The thin film annealed at the highest temperature, T = 550 °C, exhibits higher density and lower thickness and nanoporosity volume fraction, than those annealed at 350 and 450 °C. These results indicate that thermal annealing at the highest temperature (550 °C) induces a noticeable compaction effect on the structure of the studied thin films.  相似文献   

9.
A series of superhydrophobic polytetrafluoroethylene (PTFE) surfaces were prepared by a facile cold pressing and sintering method, and their microstructures and wetting behaviors could be artificially tailored by altering sintering temperature and using different masks. Specifically, the microstructures mainly depended on the sintering temperature, whereas the wetting behaviors, water contact angle (WCA) and sliding angle (SA), greatly hinged on both the sintering temperature and mask. Then a preferable superhydrophobic surface with WCA of 162 ± 2° and SA of 7° could be obtained when the sintering temperature was 360 °C and the 1000 grit abrasive paper was used as a mask. In addition, it was worth noting that the as-prepared surfaces exhibited excellent stability under UV illumination, which was the most key factor for them toward practical applications.  相似文献   

10.
By applying alkaline-catalyzed co-hydrolysis and copolycondensation reactions of tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES) in organic siloxane modified polyacrylate emulsion (OSPA emulsion), we are able to demonstrate the potential for developing a sol-gel derived organic-inorganic hybrid emulsion for a superhydrophobic surface research. TEOS and MTES derived sol-gel moieties can be designed for a physical roughness and hydrophobic characteristic (Si-CH3) of the hybrid superhydrophobic surface, while OSPA emulsion can be endowed for good film-forming property. The effect of formulation parameters on superhydrophobicity and film-forming property was analyzed. The water contact angle (WCA) on the sol-gel derived hybrid film is determined to be 156°, and the contact angle hysteresis is 5° by keeping the mole ratio of TEOS:MTES:C2H5OH:NH3·H2O:AMP-95 at 1:4:30:10:0.63 and the mass percentage of OSPA emulsion at 25%. The nanoparticle-based silica rough surface is observed as the mole ratio of MTES/TEOS at 4:1. The sol-gel derived organic-inorganic hybrid emulsion shows remarkable film-forming property when the mole ratio of MTES/TEOS reaches or exceeds 4:1. With the primer coating, the performance of superhydrophobic film achieve actual use standard. It reveals that this new procedure is an effective shortcut to obtain a superhydrophobic surface with potential applications.  相似文献   

11.
Deposition of HfO2 films on n-type 4H-SiC substrates by sol-gel spin-on coating technique has been performed and the physical and electrical characteristics of this film as a function of annealing temperature (550, 750, and 850 °C for 30 min) have been reported. The physical properties of the film have been characterized using a Filmetrics and X-ray diffractometer, while conduction atomic force microscope and semiconductor parameter analyzer were used for electrical characterization. Phase transformation has been revealed in the oxide as the annealing temperature changed. Refractive index, relative density, dielectric constant of the film, and oxide-semiconductor interface trap density have been extracted and related to the leakage current through the oxide. It has been recorded that, oxide annealed at 700 °C has demonstrated the lowest leakage current and the best oxide reliability. The reasons of these observations have been explained.  相似文献   

12.
The photo-induced change in wettability of hydrophobized TiO2 films has been investigated for steel coated with acidic TiO2 nanosols containing varying concentrations of dispersed nanocrystalline titania, such as Degussa P25. The photo-induced change in wettability was evaluated by measuring the time-dependent drop of water contact angle (WCA) after samples had been soaked in either n-octyltriethoxysilane (OTS) or decanoic acid (DA). TiO2 films treated in this way exhibit superhydrophobic behaviour, with WCA greater than 160°. After radiation with UV (black light), the superhydrophobic properties are transformed into superhydrophilic properties, with WCA of almost 0°. As P25 content and layer thickness increase, high rates of photo-induced change are found, but a moderate calcination regime is required. On the other hand, hardness and E modulus pass through a maximum at 25 wt% P25, so that a P25 content between 25 and 50 wt% is the optimum for practical uses. With such stable coatings, wettability can be controlled over a wide range, and the switch between hydrophobic and hydrophilic states can be carried out repeatedly when DA is used as the hydrophobizing agent. Use of a low calcination temperature (450 °C) for the intermediate annealing of the single layers in multilayer coatings and a short final sintering step at a relatively high temperature (e.g. 630 °C for 10 min) allow the preparation of relatively thin TiO2 films on steel with a high photoactivity.  相似文献   

13.
Alumina membrane filters in the form of thin (0.3-0.8 mm) discs of 25-30 mm diameter suitable for microfiltration application have been fabricated by tape-casting technique. Further using this microfiltration membrane as substrate, boehmite sol coating was applied on it and ultrafiltration membrane with very small thickness was formed. The pore size of the microfiltration membrane could be varied in the range of 0.1-0.7 μm through optimisation of experimental parameter. In addition, each membrane shows a very narrow pore size distribution. The most important factor, which determines the pore size of the membrane, is the initial particle size and its distribution of the ceramic powder. The top thin ultrafiltration, boehmite layer was prepared by sol-gel method, with a thickness of 0.5 μm. Particle size of the sol was approximately 30-40 nm. The structure and formation of the layer was analysed through TEM. At 550 °C formation of the top layer was completed. The pore size of the ultrafiltration membrane measured from TEM micrograph was almost 10 nm. Results of microbial (Escherichia coli—smallest-sized water-borne bacteria) test confirm the possibility of separation through this membrane  相似文献   

14.
In this paper, we report the spatially controlled dissolution of silver nanoparticles in irradiated SiO2 sol-gel films. The Ag nanoparticles have been formed in the sol-gel solution before the film deposition by adding Triton and ascorbic acid and also after the film deposition using a heat treatment at 700 °C for few minutes or at 550 °C for 6 h in reducing atmosphere. Using a spectrometer, a new view white light interferometer and a micro-thermal analyzer, we demonstrate that the silver nanoparticles can be dissolved using a continuous black ray UV lamp or with a near-infrared (NIR) femtosecond laser, due to a significantly increase in the local temperature. We confirm that the micro-thermal analyzer can be used as a new tool to study the dissolution of metallic nanoparticles in thin film if located at the surface of the films.  相似文献   

15.
Superhydrophobic thin films were prepared on glass by air-brushing the in situ polymerization compositions of D5/SiO2. The wettability and morphology were investigated by contact angle measurement and scanning electron microscopy. The most superhydrophobic samples prepared had a static water contact angle of 157° for a 5 μl droplet and a sliding angle of ∼1° for 10 μl droplet. Thermal stability analysis showed that the surface maintained superhydrophobic at temperature up to 450 °C. Air trapping and capillary force on superhydrophobic behavior were evaluated.  相似文献   

16.
A novel approach was used to grow nanostructured Teflon-like superhydrophobic coatings on stainless steel (SS). In this method Teflon tailings were pyrolyzed to generate fluorocarbon precursor molecules, and an expanding plasma arc (EPA) was used to polymerize these precursors to deposit Teflon-like coating. The coating shows super hydrophobic behavior with water contact angle (WCA) of 165°. The coating was observed to be uniform. It consists of nanostructured (∼80-200 nm) features, which were confirmed by scanning electron microscopy. The chemical bond state of the film was determined by XPS and FTIR, which indicate the dominance of -CF2 groups in the deposited coating. The combination of nanofeature induced surface roughness and the low surface energy imparted by Teflon-like coating is responsible for the observed superhydrophobic nature.  相似文献   

17.
Glass melts in the system Fe2O3/FeO/CaO/Na2O/B2O3 were prepared from the raw materials, by firstly reducing them by flushing with nitrogen and subsequently roller quenching. The flakes obtained had a thickness of around 150 μm and were thermally treated at temperatures in the range from 550 to 620 °C. X-ray diffraction gave evidence of the occurrence of nanocrystalline magnetite. Magnetization measurements at room temperature show ferromagnetic behaviour and no hysteresis. Temperature-dependent measurements showed a monotonic decrease of the saturation magnetization with temperature, and a Curie temperature of 553 °C. The primary mean particle core diameter is around 10 nm after annealing at 570 °C.  相似文献   

18.
A superhydrophobic surface was obtained by embedding hydrophobically modified fumed silica (HMFS) particles in polyvinylidene fluoride (PVDF) matrix. The water contact angle (WCA) on the PVDF-HMFS hybrid composite coating is influenced by the content and nature of silica particles in the coating. As the silica concentration in PVDF matrix was increased from 33.3% to 71.4%, WCA increased from 117° to 168° and the sliding angle decreased from 90° to <1°. Surface topography of the coating was examined using scanning electron microscopy. An irregular rough surface structure composed of microcavities and nanofilaments was found to be responsible for the superhydrophobicity. The method is simple and cost-effective and can be used for preparing self-cleaning superhydrophobic coating on large areas of different substrates.  相似文献   

19.
Wetting behavior of solid surfaces is a key concern in our daily life as well as in engineering and science. In the present study, we demonstrate a simple dip coating method for the preparation of Thermally stable, transparent superhydrophobic silica films on glass substrates at room temperature by sol-gel process. The coating alcosol was prepared by keeping the molar ratio of methyltriethoxysilane (MTES), trimethylmethoxysilane (TMMS), methanol (MeOH), water (H2O) constant at 1:0.09:12.71:3.58, respectively with 13 M NH4OH throughout the experiments and the films were prepared with different deposition time varied from 5 to 25 h. In order to improve the hydrophobicity of as deposited silica films, the films were derivatized with 10% trimethylchlorosilane (TMCS) as a silylating agent in hexane solvent for 24 h. Enhancement in wetting behavior was observed for surface derivatized silica films which showed a maximum static water contact angle (172°) and minimum sliding angle (2°) for 25 h of deposition time. The superhydrophobic silica films retained their superhydrophobicity up to a temperature of 550 °C. The silica films were characterized by field emission scanning electron microscopy (FE-SEM), surface profilometer, Fourier transform infrared (FT-IR) spectroscopy, thermo-gravimetric and differential thermal analysis (TG-DTA), percentage of optical transmission, water contact angle measurements. The imperviousness behavior of the films was tested with various acids.  相似文献   

20.
Stable superhydrophobic films were prepared on the electrochemical oxidized titania/titanium substrate by a simple immersion technique into a methanol solution of hydrolyzed 1H,1H,2H,2H-perfluorooctyltriethoxysilane [CF3(CF2)5(CH2)2Si(OCH2CH3)3, PTES] for 1 h at room temperature followed by a short annealing at 140 °C in air for 1 h. The surface morphologies and chemical composition of the film were characterized by means of water contact angle (CA), field emission scanning electron microscopy (FESEM), atomic force microscope (AFM) and X-ray photoelectron spectroscopy (XPS). The water contact angle on the surface of this film was measured to be as high as 160°. SEM images showed that the resulting surfaces exhibited special hierarchical structure. The special hierarchical structure along with the low surface energy leads to the high surface superhydrophobicity. The corrosion resistance ability and durance property of the superhydrophobic film in 3.5 wt.% NaCl solution was evaluated by the electrochemical impedance spectroscopy (EIS). The anticorrosion properties of the superhydrophobic film are compared to those of unmodified pure titanium and titania/titanium substrates. The results showed that the superhydrophobic film provides an effective corrosion resistant coating for the titanium metal even with immersion periods up to 90 d in the 3.5 wt.% NaCl solution, pointing to promising future applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号