首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A superhydrophobic surface was obtained by combining application of CaCO3/SiO2 mulberry-like composite particles, which originated from violent stirring and surface modification, and self-assembly of polydimethylsiloxane. Water contact angle and sliding angle of the superhydrophobic surface were measured to be about 164 ± 2.5° and 5°, respectively. The excellent hydrophobicity is attributed to the synergistic effect of micro-submicro-nano-meter scale roughness (fabricated by composite particles) and the low surface energy (provided by polydimethylsiloxane). This procedure makes it possible for widespread applications of superhydrophobic film due to its simplicity and practicability.  相似文献   

2.
The superhydrophobic surfaces have drawn lot of interest, in both academic and industries because of optically transparent, adherent and self-cleaning behavior. Surface chemical composition and morphology plays an important role in determining the superhydrophobic nature of coating surface. Such concert of non-wettability can be achieved, using surface modifying reagents or co-precursor method in sol-gel process. Attempts have been made to increase the hydrophobicity and optical transparency of methyltrimethoxysilane (MTMS) based silica coatings using polymethylmethacrylate (PMMA) instead of formal routes like surface modification using silylating reagents. The optically transparent, superhydrophobic uniform coatings were obtained by simple dip coating method. The molar ratio of MTMS:MeOH:H2O was kept constant at 1:5.63:1.58, respectively with 0.5 M NH4F as a catalyst and the weight percent of PMMA varied from 1 to 8. The hydrophobicity of silica coatings was analyzed by FTIR and contact angle measurements. These substrates exhibited 91% optical transmittance as compared to glass and water drop contact angle as high as 171 ± 1°. The effect of humidity on hydrophobic nature of coating has been studied by exposing these films at relative humidity of 90% at constant temperature of 30 °C for a period of 45 days. The micro-structural studies carried out by transmission electron microscopy (TEM).  相似文献   

3.
V. Lavalley 《Surface science》2007,601(23):5424-5432
First and original results are reported regarding the surface evolution of two kinds of oxide film after covalent grafting and hybridization of hairpin oligonucleotide probes. These hairpin probes were monolabelled with a 1.4 nm gold nanoparticle. One kind of oxide film was rough Sb doped SnO2 oxide film and the other kind was smooth SiO2 film. Same process of covalent grafting, involving a silanization step, was performed on both oxide surfaces. Atomic force microscopy (AFM) was used to study the evolution of each oxide surface after different steps of the process: functionalization, probe grafting and hybridization. In the case of rough SnO2 films, a slight decrease of the roughness was observed after each step whereas in the case of smooth SiO2 films, a maximum of roughness was obtained after probe grafting. Step height measurements of grafted probes could be performed on SiO2 leading to an apparent thickness of around 3.7 ± 1.0 nm. After hybridization, on the granular surface of SnO2, by coupling AFM with SEM FEG analyses, dispersed and well-resolved groups of gold nanoparticles linked to DNA duplexes could be observed. Their density varied from 6.6 ± 0.3 × 1010 to 2.3 ± 0.3 × 1011 dots cm−2. On the contrary, on smooth SiO2 surface, the DNA duplexes behave like a dense carpet of globular structures with a density of 2.9 ± 0.5 × 1011 globular structures cm−2.  相似文献   

4.
Polydimethylsiloxane (PDMS)/fumed silica A-300 and PDMS/ZrO2/A-300 were studied using adsorption, thermogravimetry, temperature-programmed desorption (TPD) mass-spectrometry, infrared spectroscopy, XRD, and broadband dielectric relaxation spectroscopy. ZrO2 was synthesized on fumed silica with zirconium acetylacetonate in CCl4 at 350 K for 1 h and calcinated at 773 K for 1 h (1-4 reaction cycles). PDMS (5-40 wt.%) was adsorbed onto silica and zirconia/silica from hexane solution and then dried. Grafted zirconia changes the chemistry of the surface (because of its catalytic capability) and the topology of secondary particles (because of occupation of voids in aggregates of primary silica particles by zirconia nanoparticles) responsible for the textural porosity of the powders. Therefore, many properties (such as structural characteristics of the composites, reactions on heating in air and vacuum, interfacial relaxation phenomena, hydrophobicity as a function of treatment temperature, etc.) of PDMS/zirconia/silica strongly differ from those of PDMS/A-300. Broadening of the α-relaxation of PDMS at the interfaces of disperse oxides suggests both weakening of the PDMS-PDMS interaction and strengthening of the PDMS-oxide interaction.  相似文献   

5.
Stable superhydrophobic films were prepared on the electrochemical oxidized titania/titanium substrate by a simple immersion technique into a methanol solution of hydrolyzed 1H,1H,2H,2H-perfluorooctyltriethoxysilane [CF3(CF2)5(CH2)2Si(OCH2CH3)3, PTES] for 1 h at room temperature followed by a short annealing at 140 °C in air for 1 h. The surface morphologies and chemical composition of the film were characterized by means of water contact angle (CA), field emission scanning electron microscopy (FESEM), atomic force microscope (AFM) and X-ray photoelectron spectroscopy (XPS). The water contact angle on the surface of this film was measured to be as high as 160°. SEM images showed that the resulting surfaces exhibited special hierarchical structure. The special hierarchical structure along with the low surface energy leads to the high surface superhydrophobicity. The corrosion resistance ability and durance property of the superhydrophobic film in 3.5 wt.% NaCl solution was evaluated by the electrochemical impedance spectroscopy (EIS). The anticorrosion properties of the superhydrophobic film are compared to those of unmodified pure titanium and titania/titanium substrates. The results showed that the superhydrophobic film provides an effective corrosion resistant coating for the titanium metal even with immersion periods up to 90 d in the 3.5 wt.% NaCl solution, pointing to promising future applications.  相似文献   

6.
TiO2 μ-donuts have been fabricated on glass and silicon substrates using polymer masks in combination with a sol-gel technique. Cylindrical poly(methyl methacrylate) (PMMA) nanopillars have been created using a composite polymer of polystyrene (PS) and PMMA followed by careful removal of the PS. Atomic force microscopy (AFM) analyses show that the height and diameter of the PMMA cylinders used as the mask are 440 ± 5 nm and 2.1 ± 0.2 μm, respectively. The cylindrical PMMA nanopillars have been coated with the sol of the TiO2 precursor by a spin coating technique and annealed in air at elevated temperature to remove the PMMA mask. Removal of the PMMA mask has resulted in the formation of well ordered μ-donuts of TiO2 on silicon surfaces. The interior and exterior heights of the TiO2 μ-donuts are found to be 373 ± 152 nm and 457 ± 136 nm, respectively; and the interior and exterior diameters of the TiO2 μ-donuts are found to be 1.33 ± 0.63 μm and 2.82 ± 0.50 μm, respectively. X-ray photoelectron spectroscopy (XPS) spectra of the TiO2 μ-donuts as well as the smooth TiO2 thin film showed signals from Ti and O confirming the presence of TiO2 with Ti 2p3/2 and O 1s peaks at 458.8 eV and 530.4 eV, respectively. The O 1s peak of the TiO2 μ-donuts shows another peak at binding energy 532.0 eV due to SiO2, as during annealing, the PMMA evaporates and the Si substrate is exposed. The X-ray diffractometer (XRD) pattern of the smooth TiO2 thin film indicates that the anatase phase is present, with the characteristic peaks observed at 2θ values of 25.4°, 37.4°, and 48° corresponding to (1 0 1), (0 0 4), and (2 0 0) planes, respectively. UV-vis absorption spectra of TiO2 μ-donuts on glass showed an unusual absorption of light in the visible region at ∼524 nm in addition to the usual UV absorption at ∼337 nm.  相似文献   

7.
Ag-TiO2-Thiol/Poly(methyl methacrylate) (PMMA) coating has been prepared via adsorbed-layer nanoreactor technique and self-assembling method. The composite coating shows a superhydrophobic property with reversible switching of adhesion. In the UV-vis spectra, absorption appeared in ultraviolet region of 229-293 nm (UVC region) and 320-370 nm (UVA region). Additionally, the stability of the superhydrophobic surface was tested under the following conditions: (1) in basic solution (pH = 14); (2) in acid solution (pH = 1); (3) in artificial seawater. The coating shows stability since the contact angle of the sample still remained higher than 150° in the above conditions. The corrosion resistance of the superhydrophobic surfaces was investigated by electrochemical measurements and the results revealed that the superhydrophobic coatings are anticorrosive well.  相似文献   

8.
Metal-insulator-semiconductor (MIS) structures with a nanocrystal carbon (nc-C) embedded in SiO2 thin films were fabricated using a focused ion beam (FIB) system with a precursor of low-energy Ga+ ion and carbon source. The crystallinity of nc-C was investigated by Raman spectroscopy and atomic force microscopy (AFM). Raman spectra indicate the evidence of crystallization of nc-C after annealed at 600 °C by the sharp peak at 1565 cm−1 in graphite (sp2), while no peak of diamond (sp3) could be seen at 1333 cm−1. The AFM images showed the nc-C dots controlled with diameter of 100 nm, 200 nm and 300 nm, respectively. The above results revealed that the nc-C dots had sufficiently stuck onto SiO2 films. The hysterisis loop in the capacitance-voltage characteristics appeared in the MIS device with SiO2/nc-C/SiO2 structure in which voltage shift is 0.32 V for radical oxidation and 0.14 V for dry oxidation, respectively.  相似文献   

9.
Wetting behavior of solid surfaces is a key concern in our daily life as well as in engineering and science. In the present study, we demonstrate a simple dip coating method for the preparation of Thermally stable, transparent superhydrophobic silica films on glass substrates at room temperature by sol-gel process. The coating alcosol was prepared by keeping the molar ratio of methyltriethoxysilane (MTES), trimethylmethoxysilane (TMMS), methanol (MeOH), water (H2O) constant at 1:0.09:12.71:3.58, respectively with 13 M NH4OH throughout the experiments and the films were prepared with different deposition time varied from 5 to 25 h. In order to improve the hydrophobicity of as deposited silica films, the films were derivatized with 10% trimethylchlorosilane (TMCS) as a silylating agent in hexane solvent for 24 h. Enhancement in wetting behavior was observed for surface derivatized silica films which showed a maximum static water contact angle (172°) and minimum sliding angle (2°) for 25 h of deposition time. The superhydrophobic silica films retained their superhydrophobicity up to a temperature of 550 °C. The silica films were characterized by field emission scanning electron microscopy (FE-SEM), surface profilometer, Fourier transform infrared (FT-IR) spectroscopy, thermo-gravimetric and differential thermal analysis (TG-DTA), percentage of optical transmission, water contact angle measurements. The imperviousness behavior of the films was tested with various acids.  相似文献   

10.
We have developed low temperature formation methods of SiO2 layers which are applicable to gate oxide layers in thin film transistors (TFT) by use of nitric acid (HNO3). Thick (>10 nm) SiO2 layers with good thickness uniformity (i.e., ±4%) can be formed on 32 cm × 40 cm substrates by the two-step nitric acid oxidation method in which initial and subsequent oxidation is performed using 40 and 68 wt% (azeotropic mixture) HNO3 aqueous solutions, respectively. The nitric acid oxidation of polycrystalline Si (poly-Si) thin films greatly decreases the height of ridge structure present on the poly-Si surfaces. When poly-Si thin films on 32 cm × 40 cm glass substrates are oxidized at azeotropic point (i.e., 68 wt% HNO3 aqueous solutions at 121 °C), ultrathin (i.e., 1.1 nm) SiO2 layers with a good thickness uniformity (±0.05 nm) are formed on the poly-Si surfaces. When SiO2/Si structure fabricated using plasma-enhanced chemical vapor deposition is immersed in 68 wt% HNO3, oxide fixed charge density is greatly decreased, and interface states are eliminated. The fixed charge density is further decreased by heat treatments at 200 °C, and consequently, capacitance-voltage characteristics which are as good as those of thermal SiO2/Si structure are achieved.  相似文献   

11.
Superhydrophobic thin films were prepared on glass by air-brushing the in situ polymerization compositions of D5/SiO2. The wettability and morphology were investigated by contact angle measurement and scanning electron microscopy. The most superhydrophobic samples prepared had a static water contact angle of 157° for a 5 μl droplet and a sliding angle of ∼1° for 10 μl droplet. Thermal stability analysis showed that the surface maintained superhydrophobic at temperature up to 450 °C. Air trapping and capillary force on superhydrophobic behavior were evaluated.  相似文献   

12.
A novel ZrC-SiC coating was prepared on carbon/carbon (C/C) composites surface by solid phase infiltration and the ablation properties of the ZrC-SiC coated C/C composites under oxyacetylene flame were studied. The results show that the coating prepared on the condition of optimum process parameters exhibits dense surface and outstanding anti-ablation ability. After ablation for 20 s, the mass ablation rates of the coated C/C composites can be lowered to 2.36 × 10−3 g/s, 37.1% reduction compared with uncoated C/C composites. The oxide layer composed of ZrO2 and SiO2 acts as oxygen diffusion barrier and the evaporation of ZrO2 and SiO2 absorbs a great amount of heat from the flame and reduces the erosive attack on the coating.  相似文献   

13.
A facile and novel method was developed to fabricate rough Co3O4 surface with hierarchical micro- and nanostructures by the combination of simple solid state reactions and coating process. After modification with stearic acid, a superhydrophobic surface with water contact angle of 155 ± 1.8° and sliding angle of 2° was obtained. The superhydrophobic Co3O4 surface remained superhydrophobic property in a wide pH range from 3 to 14. The superhydrophobic Co3O4 surface also showed excellent self-cleaning property and high stability in ambient environments.  相似文献   

14.
Nanostructured Ni films with high hardness, high hydrophobicity and low coefficient of friction (COF) were fabricated. The surface texture of lotus leaf was replicated using a cellulose acetate film, on which a nanocrystalline (NC) Ni coating with a grain size of 30 ± 4 nm was electrodeposited to obtain a self-sustaining film with a hardness of 4.42 GPa. The surface texture of the NC Ni obtained in this way featured a high density (4 × 103 mm−2) of conical protuberances with an average height of 10.0 ± 2.0 μm and a tip radius of 2.5 ± 0.5 μm. This structure increased the water repellency and reduced the COF, compared to smooth NC Ni surfaces. The application of a short-duration (120 s) electrodeposition process that deposited “Ni crowns” with a larger radius of 6.0 ± 0.5 μm on the protuberances, followed by a perfluoropolyether (PFPE) solution treatment succeeded in producing a surface texture consisting of nanotextured protuberances that resulted in a very high water contact angle of 156°, comparable to that of the superhydrophobic lotus leaf. Additionally, the microscale protuberances eliminated the initial high COF peaks observed when smooth NC Ni films were tested, and the PFPE treatment resulted in a 60% reduction in the steady-state COFs.  相似文献   

15.
E. Coetsee 《Applied Surface Science》2010,256(22):6641-10155
X-ray photoelectron spectroscopy (XPS) results were obtained for standard Y2SiO5:Ce phosphor powders as well as undegraded and 144 h electron degraded Y2SiO5:Ce pulsed laser deposited (PLD) thin films. The two Ce 3d peaks positioned at 877.9 ± 0.3 and 882.0 ± 0.2 eV are correlated with the two different sites occupied by Ce in the Y2SiO5 matrix. Ce replaced the Y in the two different sites with coordination numbers of 9 and 7. The two Ce 3d XPS peaks obtained during the thin film analysis were also correlated with the luminescent mechanism of the broad band emission spectra of the Y2SiO5:Ce X1 phase. These two different sites are responsible for the two main sets of cathodoluminescent (CL) and photoluminescence (PL) peaks situated at wavelengths of 418 and 496 nm. A 144 h electron degradation study on the Y2SiO5:Ce thin film yielded an increase in the CL intensity with a second broad emission peak emerging between 600 and 700 nm. XPS analysis showed the presence of SiO2 on the surface that formed during prolonged electron bombardment. The electron stimulated surface chemical reaction (ESSCR) model is used to explain the formation of this luminescent SiO2 layer.  相似文献   

16.
Orange-emitting SrS:Eu2+ phosphors were coated with nanoscale SiO2 and their photoluminescence (PL) degradation behavior in moist air was investigated. The SiO2 coating was obtained by sol-gel process using diethoxydimethylsilane (DEDMS) and the coating content was varied from 0.5 to 2 wt%. The coatings were composed of a uniform, continuous, and amorphous SiO2 layer of 30-50 nm thickness and the coating thickness was not varied significantly with the coating content. No peak shift and no decrease of PL intensity were observed after coating. The PL intensity of the coated phosphors decreased to ∼75% of the original value after 10 h exposure to moist air, while the uncoated phosphor decreased to ∼33%, which indicates the improved moisture resistance of the nanoscale SiO2 coated SrS:Eu2+ phosphors.  相似文献   

17.
Superhydrophobic surfaces based on ZnO-PDMS nanocomposite coatings are demonstrated by a simple, facile, time-saving, wet chemical route. ZnO nanopowders with average particle size of 14 nm were synthesized by a low temperature solution combustion method. Powder X-ray diffraction results confirm that the nanopowders exhibit hexagonal wurtzite structure and belong to space group P63mc. Field emission scanning electron micrographs reveal that the nanoparticles are connected to each other to make large network systems consisting of hierarchical structure. The as formed ZnO coating exhibits wetting behaviour with Water Contact Angle (WCA) of ∼108°, however on modification with polydimethylsiloxane (PDMS), it transforms to superhydrophobic surface with measured contact and sliding angles for water at 155° and less than 5° respectively. The surface properties such as surface free energy (γp), interfacial free energy (γpw), and the adhesive work (Wpw) were evaluated. Electron paramagnetic resonance (EPR) studies on superhydrophobic coatings revealed that the surface defects play a major role on the wetting behaviour. Advantages of the present method include the cheap and fluorine-free raw materials, environmentally benign solvents, and feasibility for applying on large area of different substrates.  相似文献   

18.
The casting molds including various shapes within axial and lateral resolution (110 μm and 5 μm) could be precisely fabricated and were suitable for the fabrication of PDMS microchannel possessing the larger inner volume for the purpose of the rapid capillary force migration. The tight bonding between PDMS mold and SiO2/Si surface not only was governed by the flexibility and the degree of tilted angle (TA) of PDMS microchannel which shows the minimum value at the 0.2 weight ratio (Wr) of curing agent but also efficiently generates the capillary migration.  相似文献   

19.
High reflectivity coating is designed and fabricated with HfO2/SiO2 stacks. The laser-induced damage experiment is prepared by a third-order harmonic generation of Nd:YAG laser (355 nm, 8 ns). Typical damage micrographs are obtained using atomic force microscope (AFM) and scanning electron microscope (SEM). A theoretical model based on the thermal transfer is tried to describe the defect dependence of damage morphology. Three situations are considered in this model: single defect, couple defects and high absorption film. The calculated results show that the second situation agrees well with the experiment.  相似文献   

20.
ZnO/SiO2 thin films were fabricated on Si substrates by E-beam evaporation with thermal retardation. The as-prepared films were annealed for 2 h every 100 °C in the temperature range 400-800 °C under ambient air. The structural and optical properties were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM) and photoluminescence (PL). The XRD analysis indicated that all ZnO thin films had a highly preferred orientation with the c-axis perpendicular to the substrate. From AFM images (AFM scan size is 1 μm×1 μm), the RMS roughnesses of the films were 3.82, 5.18, 3.65, 3.40 and 13.2 nm, respectively. PL measurements indicated that UV luminescence at only 374 nm was observed for all samples. The optical quality of the ZnO film was increased by thermal retardation and by using an amorphous SiO2 buffer layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号