首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 163 毫秒
1.
利用激光诱导击穿光谱技术结合机器学习算法,对东北5个产地(大兴安岭、集安、恒仁、石柱、抚松)的人参进行产地识别,建立了主成分分析算法分别结合反向传播(BP)神经网络和支持向量机算法的人参产地识别模型.实验采集了5个产地人参共657组在200-975 nm的激光诱导击穿光谱,经光谱数据预处理后,对C,Mg,Ca,Fe,H,N,O等元素的8条特征谱线进行主成分分析,原光谱数据的前3个主成分累积贡献率达到92.50%,且样品在主成分空间中呈现良好的聚集分类.降维后的前3个主成分以2∶1进行随机抽取,分别作为分类算法的训练集和测试集.实验结果表明主成分分析结合BP神经网络及支持向量机的平均识别率分别为99.08%和99.5%.发生误判的原因是集安和石柱两地地理环境的接近而导致的H,O两元素在Ca元素离子发射谱线下的归一化强度相似.本研究为激光诱导击穿光谱技术在人参产地的快速识别提供了方法和参考.  相似文献   

2.
为了实现对四唑类化合物的快速非接触识别和分类,本文搭建了激光诱导击穿光谱和拉曼光谱集成测试系统。首先采集了4种四唑类化合物在1 064 nm激发波长下的拉曼光谱,包括四氮唑、5-氨基四氮唑、1,5-二氨基四氮唑和1-甲基-5-氨基四氮唑。通过对特定官能团拉曼峰位的分析,成功地将它们鉴别出来。然后基于激光诱导击穿光谱(LIBS)技术,采集各个样本的等离子体辐射光谱。选取140组光谱数据进行训练,建立分类模型,剩余60组数据对所得的类型区域的准确性进行验证。本文基于主成分分析(PCA)与支持向量机(SVM)相结合的算法,建立了两个分类模型。一是将全谱进行主成分分析,选取前64个主成分,利用支持向量机(SVM)算法建立模型。二是通过对比光谱差异,选取10个特征波长进行主成分分析,选取前3个主成分建立模型。发现前者平均预测准确度只有88. 3%,而后者60个光谱样本点全部落在其对应的标准样品类型区域内,分类准确度达到100%。实验结果表明,将激光诱导击穿光谱和拉曼光谱联合使用,可以准确地鉴别四唑类化合物。  相似文献   

3.
研究了人工神经网络在激光诱导击穿光谱(LIBS)塑料分类识别方面的应用。选用七种常见的塑料作为实验样品,获得每种样品的170组LIBS光谱数据,利用主成分分析获得前五个主成分的得分矩阵。用每种塑料样品的130组光谱数据的主成分得分矩阵作为训练集,建立反向传播(BP)人工神经网络模型。将其余40组主成分得分作为测试数据输入训练好的模型进行分类识别,其识别准确度达到97.5%。实验结果表明,通过采用主成分分析与BP人工神经网络相结合的方法,可以很好地进行塑料激光诱导击穿光谱的分类识别,对塑料的回收利用有重要价值。  相似文献   

4.
利用激光诱导击穿光谱分析土壤成份   总被引:4,自引:2,他引:2       下载免费PDF全文
 搭建了一套激光诱导击穿光谱实验装置,并通过配置特定样品,开展了一系列激光诱导击穿光谱探测实验。根据含有不同质量分数的同种元素样品的激光诱导击穿光谱实验结果,获得元素质量分数与谱线强度的关系曲线(定标曲线)。对中南民族大学附近的土壤进行激光诱导击穿光谱实验,发现土壤中含有Mg,Ca,Na等18种元素,对河南云台山茱萸峰岩石的激光诱导击穿光谱实验结果仅获得Fe,Mg,Ca 3种金属元素。比较这2种实际样品的激光诱导击穿光谱结果表明,检测样品的物理结构影响激光诱导光谱的实验结果。  相似文献   

5.
不同类型的烟草在元素种类和元素含量上存在一定的差异,本文基于激光诱导击穿光谱(LIBS)技术,采集了不同种类烟草的原子发射光谱,并结合支持向量机方法,实现了烟草的快速分类鉴别。文章选取了市面上9种不同品牌的香烟,提取了其烟丝LIBS谱线的全部特征峰,通过对全谱进行窗口平滑去背景和峰位漂移的修正等预处理,再进行主成分分析降维,结合支持向量机方法(SVM),建立了分类模型,给出了9种品牌香烟烟草的分类结果,平均准确度达到97. 47%。实验结果表明:激光诱导击穿光谱技术在烟草防伪鉴定和现场快速识别分类等方面具有巨大的应用潜力。  相似文献   

6.
为实现不同种类土壤的快速分类鉴别,实验研究了基于激光诱导击穿光谱技术的土壤快速分类方法。由于不同类型的土壤在元素组成上会存在较大差异,所以利用激光诱导击穿光谱技术进行土壤分类具有可行性。不同土壤在相同实验条件下产生的等离子体温度会存在较大差异,可以作为分类的重要依据,所选择的7类土壤中,赤红壤的等离子体温度最高。选取土壤中6种常量元素Si,Fe,Al,Mg,Ca和Ti的光谱强度作为分类指标,利用主成分分析(principal component analysis,PCA)对7种土类的25个样品进行了分类,其中砖红壤和赤红壤分类出现了交叠,而不同高山草甸土样品之间元素差异较大,并没有实现较好的聚类。利用反向传播神经网络(back-propagation artificial neural network)结合土壤的LIBS光谱对土壤进行了分类,分类结果与PCA结果相近,赤红壤与砖红壤出现了识别错误。当用PCA分析获得三个主成分值作为BP神经网络的输入量时,获得了较好的分类结果,因为简化了输入量,降低了BP神经网络的误差,此时只有一个高山草甸土被识别成褐土,而高山草甸土的等离子体温度显著低于褐土,所以结合不同土壤类型的等离子体温度差异,能够实现不同土壤的分类识别。实验证明激光诱导击穿光谱技术可以应用于土壤分类,为土壤普查和合理利用提高了一种新的技术。  相似文献   

7.
远程激光诱导击穿光谱技术分析岩石元素成分   总被引:2,自引:0,他引:2  
远程激光诱导击穿光谱技术是一种利用脉冲激光和聚焦光路对远距离目标烧蚀击穿,获取目标等离子体光谱,定性或定量分析物质元素组成的光谱探测技术。设计并搭建了一套远程激光诱导击穿光谱系统。该系统结合卡式望远镜光学结构,实现探测2~10 m距离的目标、并可自动变焦。基于该系统提出一种远程探测岩石主要元素含量方法。通过对比实验,研究了脉冲能量、采集延时、积分时间、探测点累计探测次数对光谱信号的影响,确定了岩石谱线获得的最佳条件。选择48块岩石标本和6种常见国标岩石样品(页岩、花岗岩、安山岩、玄武岩、片麻岩、伟晶岩)进行LIBS实验。以原子光谱数据库为参考,根据岩石的主要元素提取特征谱线(SiⅠ390.55 nm,AlⅠ394.40 nm,AlⅠ396.15 nm,CaⅡ396.85 nm,FeⅠ404. 60 nm,SiⅠ500.60 nm,MgⅠ518.36 nm,NaⅠ589.59 nm)。利用偏最小二乘算法(PLS)建立岩石成分定量分析模型,将48块岩石标本作为训练集进行求解,并用六种国标岩石对模型进行检测,预测岩石Si和Al元素含量,平均误差分别为9.4%和9.6%。  相似文献   

8.
激光诱导击穿光谱(LIBS)是一种高效快速的光谱采集手段,可应用于各类物质的元素分析工作中。线性判别分析(LDA)与支持向量机(SVM)是化学计量学中两种常用的有监督算法,均通过对已知不同种类的样本数据进行学习建模,进而实现对未知类别数据的归类。为了实现LIBS技术对有机物的高准确率识别,将这两种算法应用到LIBS光谱数据的分类中。实验利用波长为1 064 nm的纳秒激光烧蚀女贞、珊瑚树、竹子三种植物的叶片,并采集每种树叶220~432 nm波段的100组光谱数据。通过对300组样本的原始光谱数据进行主成分提取,由第一主成分(PC1)和第二主成分(PC2)的得分图得出三种植物光谱的相似度非常高。然后,利用每种叶片70组样本的光谱数据作为训练集建模,其余30组光谱数据作为测试集来进行树叶种类的预测识别。将PCA对原始光谱数据提取得到的前20个主成分作为LDA与SVM建模的属性值。对于LDA算法,将属性值分析后得到前两个判别函数值,通过聚类分析发现不同种类的植物叶片光谱数据在空间上的分离效果较好,同一种类基本聚集在一起。再借助马氏距离可得到测试集的平均分类正确率为96.67%。与此类似,使用SVM方法对训练集样本的数据进行学习得到分类超平面,对测试集的平均分类正确率达到98.9%。研究结果表明,经过PCA对数据的预处理,再结合LDA,SVM这两种方法可实现LIBS技术应用于复杂有机物的快速准确分类,并且PCA与SVM结合的分类正确率更高。该方法可在食品快速溯源、生物组织原位鉴别、有机爆炸物远程分析等领域应用。  相似文献   

9.
实现了一套实验室环境下的LIBS-Raman测试系统的设计,并验证激光诱导击穿光谱技术(LIBS)和拉曼(Raman)光谱技术在火星模拟环境下矿物样品的综合检测能力。该系统使用卡塞格林望远镜结构进行远程的LIBS激发,使用旁路反射光路进行远程脉冲Raman光谱的激发,其激发光源的波长分别为1 064和532 nm。之后统一使用卡塞格林望远镜进行二者光谱信号的收集。为了充分模拟火星表面矿物所处的物理条件,设计与实现了一套气体腔体,通过将样品放置在气体舱中,可以实现对火星表面条件进行最大程度的模拟。为了验证使用该LIBS-Raman系统进行火星矿物分析的能力,利用8种典型矿物(孔雀石、蓝铜矿、雄黄、雌黄、文石、方解石、硬石膏和石膏等)样品展开实验分析。在这些样品中存在巨大的元素和分子成分上的差异,其中孔雀石、蓝铜矿分子具有不同的价态和原子比例;雄黄、雌黄分子的各原子的个数均不相同;文石、方解石虽具有相同的分子式,但是晶体结构明显不同;硬石膏和石膏矿物的差异则体现在其分子有无含有结晶水上。利用LIBS和Raman技术对这些差异性进行研究,以此来验证在火星条件下使用此组合仪器分析矿物种类和成分的有效性,并研究激光诱导击穿光谱技术和拉曼光谱技术在物质成分分析中的优缺点。实验结果表明,该系统可以在火星条件下有效分析矿物种类和成分。该对比实验还验证了在分析火星物质中的特定矿物元素组成这一问题上,LIBS技术可快速区分元素种类,但针对分子信息探测存在明显局限性;Raman光谱技术则可以在一定程度上对这种局限性进行补偿。二者结合将有效提高极端条件下具有不同分子组成和结构的矿物的识别效能。该系统的成功验证可为进一步火星探测计划提供有力补充,并对实验室建立有价值数据库提供帮助。  相似文献   

10.
激光诱导击穿火焰等离子体光谱研究   总被引:1,自引:1,他引:1       下载免费PDF全文
采用PI-MAX-II型增强型电荷耦合器件, 用Nd:YAG纳秒脉冲激光器输出的1064 nm强光束击穿在一个大气压的空气中燃烧的酒精灯火焰, 对激光诱导击穿酒精灯火焰产生的等离子体光谱进行了初步研究. 根据美国国家标准与技术研究院原子发射谱线数据库, 对等离子体中的主要元素的特征谱线进行了标识和归属. 通过激光诱导击穿空气等离子体光谱、激光诱导击穿酒精灯火焰等离子体光谱、激光诱导酒精喷灯火焰等离子体光谱的对比分析, 发现不同燃烧状况下的光谱中各原子谱线的相对强度是不同的. 这些结果对于使用激光诱导击穿技术分析和研究碳氢燃料在空气中的燃烧特性具有重要的意义和参考价值, 同时也为将该技术应用于燃烧诊断提供了实验依据.  相似文献   

11.
以门控脉冲高压电源作为火花放电电源,研究了火花放电辅助-激光诱导击穿光谱中放电通道与火花放电相对于激光脉冲之间延时的关系.研究结果表明:在合理的剥离激光能量和电极空间布置下,调节该延时可以实现由"V"字形放电到平行放电的转变.在"V"字形放电时,火花放电会扩大烧蚀坑洞的直径、破坏横向空间分辨率;而在平行放电情况下,火花放电不会扩大烧蚀坑洞的直径,从而保证其横向空间分辨率仅由激光剥离来决定.在平行放电的条件下开展了铝合金中铬元素的火花放电辅助-激光诱导击穿光谱定量分析,其检出限达到了8.8ppm,比单纯的激光诱导击穿光谱技术的分析结果改善了8倍.在火花放电辅助-激光诱导击穿光谱技术中采用带外触发控制的火花放电模式,可以实现平行放电和高横向空间分辨的样品表面元素分析.  相似文献   

12.
Zhai Y  Zhu RH  Shen H  Gu JL 《光谱学与光谱分析》2011,31(10):2634-2638
激光诱导击穿光谱法(LIBS)在精准识别该样品元素的组成成分和含量的同时,也可以得到该特征元素等离子体的电子温度、粒子旋转温度等相关光谱诊断参数.该方法非接触式、低损伤阈值,借助高速高分辨率响应的CCD探测元件更可以实现实时动态测量.文章基于LIBS的相关原理,对一块事先标定好元素成分的合金进行光谱诊断的同时,发现在改...  相似文献   

13.
岩石矿物识别分析对研究成矿规律,对地质找矿具有重要的指导意义。目前对于岩矿识别主要有两种方法:一种通过肉眼观察矿物颜色、形状,该方法主观性强,重复性低;另一种是指纹区识别法,该方法通过仪器采集谱图,选取重要峰位点或一段感兴趣区域获得样品的定性结果,该过程需要准确判断指纹区,同时每一种岩石样品的指纹区又不尽相同,这给实际操作方法带来了困难。基于激光诱导击穿光谱(LIBS)的分析技术是一种简单、快捷的光谱测试和分析手段,该方法基本不需对样品进行预处理。基于LIBS技术采集岩石矿物光谱数据,利用相关数据预处理及特征提取方法,结合极限学习机实现了岩石矿物样品的快速、准确分析。  相似文献   

14.
报道了采用激光点火辅助火花诱导击穿光谱技术分析铝合金中痕量元素时的分析行为。用低能量激光脉冲聚焦于样品表面并在放电电极之间产生等离子体来触发高压火花放电以改善火花诱导击穿光谱技术的分析行为。在当前空间几何配置下,研究得到了最佳的放电电压和储能电容等参数并在最佳实验条件下分析了样品中的铜元素,其检出限达到0.7 ppm。激光点火的辅助手段改善了火花诱导击穿光谱技术在元素分析时信号的稳定性、提高了分析精度。同时它还能够有效地降低放电电压,改善其空间分辨本领。研究表明激光点火辅助火花诱导击穿光谱技术具有灵敏度高、稳定性好以及具有较好的空间分辨本领的特点,非常适合于各种合金中的痕量元素分析。  相似文献   

15.
沈沁梅  周卫东  李科学 《光子学报》2014,39(12):2134-2138
提出了一种基于人工神经网络的激光诱导击穿光谱技术实现元素成分高准确度定量分析的方法.采用基于动量和自适应学习速率梯度下降算法的反向传播神经网络,结合激光诱导击穿光谱技术的方法测定土壤中Cr和Ba元素的含量,得到了Cr和Ba的含量以及多次重复预测的相对标准偏差,并与采用传统的内标法得到的检测结果相比较.研究结果表明:基于动量和自适应学习速率梯度下降算法的反向传播神经网络分析方法,与激光诱导击穿光谱技术相结合能更好地实现对土壤样品中Cr和Ba元素的定量检测.相对内标法,神经网络分析方法与激光诱导击穿光谱技术相结合可以很明显地提高检测准确度和精密度,对采用激光诱导击穿光谱技术定量检测土壤重金属污染具有很好的应用价值.  相似文献   

16.
激光诱导击穿光谱结合神经网络测定土壤中的Cr和Ba   总被引:4,自引:1,他引:3  
提出了一种基于人工神经网络的激光诱导击穿光谱技术实现元素成分高准确度定量分析的方法.采用基于动量和自适应学习速率梯度下降算法的反向传播神经网络,结合激光诱导击穿光谱技术的方法测定土壤中Cr和Ba元素的含量,得到了Cr和Ba的含量以及多次重复预测的相对标准偏差,并与采用传统的内标法得到的检测结果相比较.研究结果表明:基于动量和自适应学习速率梯度下降算法的反向传播神经网络分析方法,与激光诱导击穿光谱技术相结合能更好地实现对土壤样品中Cr和Ba元素的定量检测.相对内标法,神经网络分析方法与激光诱导击穿光谱技术相结合可以很明显地提高检测准确度和精密度,对采用激光诱导击穿光谱技术定量检测土壤重金属污染具有很好的应用价值.  相似文献   

17.
激光诱导击穿光谱技术(laser-induced breakdown spectroscopy)作为一种极具前景的分析和测量技术应用日益广泛。对四种香(艾草香、藏香、檀香、沉香)样品进行了激光等离子体光谱测量和分析, 得到了样品中元素的成分;并且对四种香样品中的Cu,Mn,Ca和Fe四种金属元素典型谱线的强度进行了统计分析和元素含量的对比。基于等离子体的局域热动力学的平衡模型, 计算了Ca元素的等离子体温度。实验结果为采用激光诱导击穿光谱对香品成分进行快速检测和分析的可行性提供了依据。  相似文献   

18.
组建了一套基于液芯光纤的激光诱导荧光食用油鉴别装置。研究了不同液芯光纤长度对食用油激光诱导荧光光谱的影响,分析了不同种类食用油激光诱导荧光光谱之间的差异。八种食用油共320份样本荧光数据在1 m长液芯光纤内采集,采用主成分分析方法对食用油荧光数据进行降维处理,利用偏最小二乘判别分析(PLS-DA)方法建立食用油种类的鉴别模型。结果表明,使用液芯光纤后,食用油荧光强度得到较大的增强。随着液芯光纤长度增加,食用油荧光特征峰逐渐增加并且食用油的激光诱导荧光光谱会产生红移现象,当液芯光纤长度超过80 cm后,红移趋于饱和。不同食用油的荧光光谱形状差异较大,可用于区分不同种类食用油。利用主成分1和主成分2绘制的主成分得分图显示,不同种类食用油呈现很好的聚集。当选用主成分数为10时,建立的PLS-DA食用油种类鉴别模型对训练集和预测集样本识别率均达到100%。说明本装置用于食用油种类的快速鉴别具有较高的准确性。  相似文献   

19.
激光诱导击穿光谱技术是一种新型的原子光谱分析技术,具有实时快速、 多元素同时分析和样品预处理简单等特点,从一出现便受到研究人员的广泛关注,但分析灵敏度差一直是限制该技术发展的重要因素。基于共振激发的激光诱导击穿光谱技术将原子荧光光谱技术和激光诱导击穿光谱技术结合,对目标元素进行选择性激发,可以大幅提高激光诱导击穿光谱技术的分析灵敏度,极大地拓展了LIBS技术在痕量元素检测领域的应用。本文综述了基于共振激发的激光诱导击穿光谱技术的研究进展,介绍了激光诱导等离子体中荧光光谱的产生过程以及基于共振激发的激光诱导击穿光谱技术的基本类型和基础原理,详细分析了烧蚀激光能量、 共振激发激光能量和波长、 烧蚀激光和共振激发激光之间的延时以及光谱采集门宽对光谱增强效果的影响,阐述了其在冶金、 环境监测、 同位素检测等领域的应用现状和存在的问题,并对其未来发展前景进行了展望。  相似文献   

20.
研究利用激光诱导击穿光谱技术结合化学计量学方法快速鉴别抹茶和绿茶粉的可行性。抹茶与绿茶粉的主要区别在于茶树品种、栽培管理、生长时间和加工工艺。通过采集不同厂家生产的抹茶和不同杀青方式制成的绿茶粉在230~880nm的激光诱导击穿光谱并进行归一化预处理后,选用主成分分析(PCA),依据X-variables loadings获取用于鉴别抹茶和绿茶粉的特征波长,并基于特征波长建立线性判别式分析(LDA)模型。结果表明:基于特征波长建立的LDA模型能快速鉴别抹茶和绿茶粉,4个特征波长分别属于C(Ⅰ) 247.94 nm,Mg(Ⅱ) 279.60 nm,Ca(Ⅱ) 393.45 nm和Fe(Ⅱ) 766.68 nm;建模集和预测集的判别正确率均达到100%。采用激光诱导击穿光谱技术可以准确鉴别不同厂家生产的抹茶和不同杀青方式制成的绿茶粉。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号