首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A systematic investigation about the strain distributions around the InAs/GaAs quantum dots using the finite element method is presented. A special attention is paid to influence of an Ino.2 Gao.sAs strain reducing layer. The numerical results show that the horizontal- and vertical-strain components and the biaz~ial strain are reinforced in the InAs quantum dot due to the strain-reducing layer. However, the hydrostatic strain in the quantum dot is reduced. In the framework of eight-band k · p theory, we study the band edge modifications due to the presence of a strain reducing layer. The results demonstrate that the strain reducing layer yields the decreasing band gap, i.e., the redshift phenomenon is observed in experiments. Our calculated results show that degree of the redshift will increase with the increasing thickness of the strain-reducing layer. The calculated results can explain the experimental results in the literature, and further confirm that the long wavelength emission used for optical fibre communication is realizable by adjusting the dependent parameters. However, based on the calculated electronic and heavy-hole wave function distributions, we find that the intensity of photoluminescence will exhibits some variations with the increasing thickness of the strain-reducing layer.  相似文献   

2.
汪莱  王嘉星  赵维  邹翔  罗毅 《中国物理 B》2010,19(7):76803-076803
Blue In0.2Ga0.8N multiple quantum wells (MQWs) with InxGa1 - xN (x=0.01-0.04) barriers are grown by metal organic vapour phase epitaxy. The internal quantum efficiencies (IQEs) of these MQWs are studied in a way of temperature-dependent photoluminescence spectra. Furthermore, a 2-channel Arrhenius model is used to analyse the nonradiative recombination centres (NRCs). It is found that by adopting the InGaN barrier beneath the lowest well, it is possible to reduce the strain hence the NRCs in InGaN MQWs. By optimizing the thickness and the indium content of the InGaN barriers, the IQEs of InGaN/InGaN MQWs can be increased by about 2.5 times compared with conventional InGaN/GaN MQWs. On the other hand, the incorporation of indium atoms into the intermediate barriers between adjacent wells does not improve IQE obviously. In addition, the indium content of the intermediate barriers should match with that of the lowest barrier to avoid relaxation.  相似文献   

3.
Room temperature 1.3 μm emitting InAs quantum dots (QDs) covered by an In0.4Ga0.6As/GaAs strain reducing layer (SRL) have been fabricated by solid source molecular beam epitaxy (SSMBE) using the Stranski–Krastanov growth mode. The sample used has been investigated by temperature and excitation power dependent photoluminescence (PL), photoluminescence excitation (PLE), and time resolved photoluminescence (TRPL) experiments. Three emission peaks are apparent in the low temperature PL spectrum. We have found, through PLE measurement, a single quantum dot ground state and the corresponding first excited state with relatively large energy spacing. This attribute has been confirmed by TRPL measurements which allow comparison of the dynamics of the ground state with that of the excited states. Optical transitions related to the InGaAs quantum well have been also identified. Over the whole temperature range, the PL intensity is found to exhibit an anomalous increase with increasing temperatures up to 100 K and then followed by a drop by three orders of magnitude. Carrier’s activation energy out of the quantum dots is found to be close to the energy difference between each two subsequent transition energies. PACS 68.65.Ac; 68.65.Hb; 78.67.Hc  相似文献   

4.
利用固源分子束外延技术,在In0.15Ga0.85As/GaAs量子阱生长了两个InAs/In0.15Ga0.85As量子点(DWELL)样品.通过改变其中一个InAs DWELL样品中的In0.15Ga0.85As阱层的厚度和生长温度,获得了量子点尺寸增大而且尺寸分布更均匀的结果.结合光致发光光谱(PL)和压电调制光谱(PzR)实验结果,发现该样品量子点的光学性质也同时得到 关键词: 合金分解效应 0.15Ga0.85As量子点')" href="#">InAs/In0.15Ga0.85As量子点 光致发光光谱 压电调制光谱  相似文献   

5.
We have measured the carrier capture times into intermixed In0.15Ga0.85As/Al0.2Ga0.8As quantum wells using the photoluminescence up-conversion technique. We confirm that the carrier capture into intermixed quantum wells is significantly shorter than capture into similar but nonintermixed samples. Using below and above band-gap excitation we were able to separate the various components effecting the carrier capture into the quantum well. We show that the reduction in the carrier capture times is not related to the introduction of nonradiative centres but is the consequence of the change in the quantum well potential caused by intermixing. These results indicate that intermixed devices may have higher cut-off modulation frequency than similar but nonintermixed devices.  相似文献   

6.
The influence of quantum-size layers (InAs quantum dots, In0.2Ga0.8As quantum wells, and combined quantum-well/quantum-dot layers) and heteroepitaxial passivation of surface by an In0.5Ga0.5P layer on the photomagnetic effect in epitaxial n-GaAs layers has been investigated. Original Russian Text ? I.A. Karpovich, O.E. Khapugin, 2009, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2009, Vol. 73, No. 1, pp. 119–123.  相似文献   

7.
Electrical characteristics of In0.05 Ga0.95N/Al0.07Ga0.9aN and In0.05 Ga0.95N/GaN multiple quantum well (MQW) ultraviolet light-emltting diodes (UV-LEDs) at 400hm wavelength are measured. It is found that for InGaN/AlGaN MQW LEDs, both ideality factor and parallel resistance are similar to those of InGaN/GaN MQW LEDs, while series resistance is two times larger. It is suggested that the Al0.07Ga0.93N barrier layer did not change crystal quality and electrical characteristic of p-n junction either, but brought larger series resistance. As a result, InGaN/AlGaN MQW LEDs suffer more serious thermal dissipation problem although they show higher light output efficiency.  相似文献   

8.
Abstract

Measurements of the photoluminescence (PL) of strained In0.2Ga0.8As/GaAs and In0.15Ga0.85As/GaAs quantum well structures together with the PL from bulk GaAs, in a diamond anvil cell show that the pressure coefficient of the ground confined state in the wells depends upon well width (LZ). In the thinnest wells, the coefficient is closer to that of the bulk GaAs (10.7 meV/kbar), as expected. However, in the widest wells the coefficients tend to values (9.5meV/kbar for the 15% alloy and 9.1meV/kbar for the 20% alloy) that are significantly lower than the pressure coefficient of unstrained In0.53Ga0.47As (10.9meV/kbar). It is found that the low pressure coefficients can not be explained by the change in uniaxial stress with pressure due to a difference in bulk moduli between the barrier and well.  相似文献   

9.
By the method of finite difference, the anisotropic spin splitting of the AlxGa1-xAs/GaAs/Aly Ga1-yAs/AlxGal-xAs step quantum wells (QWs) are theoretically investigated considering the interplay of the bulk inversion asymmetry and structure inversion asymmetry induced by step quantum well structure and external electric field. We demonstrate that the anisotropy of the total spin splitting can be controlled by the shape of the QWs and the external electric field. The interface related Rashba effect plays an important effect on the anisotropic spin splitting by influencing the magnitude of the spin splitting and the direction of electron spin. The Rashba spin splitting presents in the step quantum wells due to the interface related Rashba effect even without external electric field or magnetic field.  相似文献   

10.
Single self-assembled InAs quantum dots embedded in a In0.12Ga0.88As quantum well and emitting in the near infrared have been optically investigated. The dependence on the excitation power of the single quantum dot photoluminescence has been used to identify the emission of the biexciton complex. The biexciton binding energy, which has been measured for a dozen dots, increases with increasing exciton transition energy for the dot sizes investigated in the present work, as a consequence of stronger confinement in a smaller quantum dot. The obtained data is compared with experimental results available in the literature for InAs quantum dots. PACS 78.67.Hc; 73.21.La; 78.55.Cr  相似文献   

11.
The photoluminescence (PL), its temperature and power dependences have been studied in InAs quantum dots (QDs) embedded in asymmetric InxGa1?y As/GaAs quantum wells (QWs) with variable InxGa1?x As compositions in the capping layer. Three stages for thermally activated decay of QD PL intensity have been revealed. A set of rate equations for exciton dynamics (relaxation into QWs and QDs, and thermal escape) are solved to analyze the mechanism of PL thermal decay. The variety of PL intensities and peak positions, as well as the activation energies of PL intensity decay in DWELL structures with different compositions of a capping layer are discussed.  相似文献   

12.
We report on the transport, magnetotransport and magnetic properties of In0.17Ga0.83As quantum well in GaAs δ-doped by Mn. At low temperatures, the anomalous Hall effect was observed which detects the spin-polarized carriers. Negative magnetoresistance was found at low temperatures, which became positive at high temperature.  相似文献   

13.
We present results of room temperature photoreflectance (PR) and photoluminescence (PL) measurements of molecular-beam epitaxy (MBE)-grown GaAsSb/GaAs quantum dot structures: one with an In0.14Ga0.86As capping quantum well and one without it. PL was used to determine the structures’ ground-state transition energies. This result was employed in an 8-band k·p Hamiltonian to achieve a band structure of the structures, which have different electron confinement. The dot emission energies suggest a large amount of As incorporation into the dots, which is due to enhanced adatom mixing at a higher than normal growth temperature of 510 °C. Our calculations indicate a dot composition of 25-50% Sb gives the best fit to experiment. This uncertainty in composition arises due to the fact that different bowing parameters of the ternary alloy could be applied in the calculations. The theoretical analysis accounts well for the main feature in the PR spectra of both samples.  相似文献   

14.
Photoluminescence (PL) measurements under different excitation powers were carried out at low temperature on tensile-strained In0.3Ga0.7As single wells of 6 nm with InGaAs barriers lattice matched to InP substrate. PL measurements taken at 2 K show a main emission band at 0.762 eV probably originating from a type-II transition. The insertion of an ultrathin InAs layer at In0.3Ga0.7As on In0.53Ga0.47As interface reveals an additional feature at 0.711 eV as well as an excited-state luminescence emission at high pump powers. The InAs insertion improves heterointerface quality, which was confirmed by an increase in PL intensity.  相似文献   

15.
We investigate the molecular beam epitaxy growth of metamorphic InxGal-xAs materials (x up to 0.5) on GaAs substrates systematically. Optimization of structure design and growth parameters is aimed at obtaining smooth surface and high optical qualdty. The optimized structures have an average surface roughness of 0.9-1.8 nm. It is also proven by PL measurements that the optical properties of high indium content (55%) InGaAs quantum wells are improved apparently by defect reduction technique and by introducing Sb as a surfactant. These provide us new ways for growing device quality metamorphic structures on GaAs substrates with long-wavelength emissions.  相似文献   

16.
《Current Applied Physics》2019,19(5):557-562
Influence of Ga(Al)As substrates on surface morphology of InGaAs quantum dots and critical thickness of In0.5Ga0.5As film grown by molecular beam epitaxy is investigated. The In0.5Ga0.5As quantum dots are grown on (001) surfaces of GaAs and Al0.25Ga0.75 A at 450 °C, scanning tunneling microscope images show that the size of quantum dots varied slightly for 10 ML of In0.5Ga0.5As grown on GaAs and Al0.25Ga0.75As surfaces. Reflection high energy electron diffraction (RHEED) is used to monitor the growth of 4 monolayers (ML) In0.5Ga0.5As on Al0.25Ga0.75As and GaAs surfaces during deposition. The critical thickness is theoretically calculated by adding energy caused by surface roughness and heat from substrate. The calculations show that the critical thickness of In0.5Ga0.5As grown on GaAs and Al0.25Ga0.75As are 3.2 ML and 3.8 ML, respectively. The theoretical calculation agrees with the experimental results.  相似文献   

17.
The influence of layer-by-layer temperature and substrate rotation on the optical property and uniformity of self-assembled InAs/In0.2Ga0.8As/GaAs quantum dots (QDs) gown with an As2 source was investigated. An improvement in the optical property of QDs was obtained by the precise control and optimization of growth temperature utilized for each layer, i.e., InAs QDs, InGaAs quantum wells, GaAs barriers and AlGaAs layers, respectively. By using a substrate rotation, the QD density increased from ∼1.4×1010 to ∼3.2×1010 cm−2 and its size also slightly increased, indicating a good quality of QDs. It is found that the use of an appropriate substrate rotation during growth improves the room-temperature (RT) optical property and uniformity of QDs across the wafer. For the QD sample with a substrate rotation of 6 rpm, the RT photoluminescence (PL) intensity is much higher and the standard deviation of RT-PL full-width at half-maximum is decreased by 35% compared to that grown without substrate rotation.  相似文献   

18.
Absence of nonradiative recombination (NRR) centers inside GaAs wells and at GaAs/Al0.2Ga0.8As hetero-interfaces in a Si modulation-doped GaAs/Al0.2Ga0.8As multiple quantum well (MQW) structure became clear for the first time by an improved two-wavelength excited photoluminescence (PL). The NRR parameters of modulation and uniform-doped MQWs were determined self-consistently by combining the analysis of the PL intensity change due to the below-gap excitation with the internal quantum efficiency and the recombination lifetime. These results showed the superiority of modulation-doping scheme over that of uniform-doping for light emitting devices.  相似文献   

19.
The effects of thermal annealing on the large monolayer (11 ML) coverage of In0.45Ga0.55As/GaAs quantum dots (QDs) is being investigated in this study. Low temperature (8 K) photoluminescence (PL) spectra exhibits suppressed blueshift of the strongest PL emission peak even at high temperature annealing (800 °C). TEM and DCXRD characterizations showed the existence of the dots with good crystalline quality at annealing temperatures of 800-850 °C. The physics of annealing induced compositional modification of the InGaAs QDs with various monolayer coverage has been studied by a theoretical model and simulation. All our studies establish the thermal stability of large ML coverage InGaAs QDs, which is desirable for optoelectronic devices required for selective wavelength tuning in specific applications.  相似文献   

20.
Considering the strong built-in electric field (BEF) effects due to the spontaneous and piezoelectric polarizations, the intersubband optical absorptions and refractive index changes for an InxGa1-xN/AlyGa1-yN strained single quantum well are studied theoretically within the framework of the density matrix method and effective-mass approximation. The linear, third-order nonlinear and total absorption coefficients and refractive index changes are calculated as a function of the incident optical intensity and photon energy. Our results show that both the incident optical intensity and the strong BEF have great influence on the total absorptions and refractive index cllanges. The results are significant for designing some important photodetectors and the photonic crystal devices with adjustable photonic band structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号